• Title/Summary/Keyword: Automatic Information Extraction

Search Result 592, Processing Time 0.024 seconds

The Development of Efficient Multimedia Retrieval System of the Object-Based using the Hippocampal Neural Network (해마신경망을 이용한 관심 객체 기반의 효율적인 멀티미디어 검색 시스템의 개발)

  • Jeong Seok-Hoon;Kang Dae-Seong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.2 s.308
    • /
    • pp.57-64
    • /
    • 2006
  • Tn this paper, We propose a user friendly object-based multimedia retrieval system using the HCNN(HippoCampus Neural Network. Most existing approaches to content-based retrieval rely on query by example or user based low-level features such as color, shape, texture. In this paper we perform a scene change detection and key frame extraction for the compressed video stream that is video compression standard such as MPEG. We propose a method for automatic color object extraction and ACE(Adaptive Circular filter and Edge) of content-based multimedia retrieval system. And we compose multimedia retrieval system after learned by the HCNN such extracted features. Proposed HCNN makes an adaptive real-time content-based multimedia retrieval system using excitatory teaming method that forwards important features to long-term memories and inhibitory learning method that forwards unimportant features to short-term memories controlled by impression.

A Design on Informal Big Data Topic Extraction System Based on Spark Framework (Spark 프레임워크 기반 비정형 빅데이터 토픽 추출 시스템 설계)

  • Park, Kiejin
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.11
    • /
    • pp.521-526
    • /
    • 2016
  • As on-line informal text data have massive in its volume and have unstructured characteristics in nature, there are limitations in applying traditional relational data model technologies for data storage and data analysis jobs. Moreover, using dynamically generating massive social data, social user's real-time reaction analysis tasks is hard to accomplish. In the paper, to capture easily the semantics of massive and informal on-line documents with unsupervised learning mechanism, we design and implement automatic topic extraction systems according to the mass of the words that consists a document. The input data set to the proposed system are generated first, using N-gram algorithm to build multiple words to capture the meaning of the sentences precisely, and Hadoop and Spark (In-memory distributed computing framework) are adopted to run topic model. In the experiment phases, TB level input data are processed for data preprocessing and proposed topic extraction steps are applied. We conclude that the proposed system shows good performance in extracting meaningful topics in time as the intermediate results come from main memories directly instead of an HDD reading.

A Basic Study of Obstacles Extraction on the Road for the Stability of Self-driving Vehicles (자율주행 차량의 안전성을 위한 도로의 장애물 추출에 대한 기초 연구)

  • Park, Chang min
    • Journal of Platform Technology
    • /
    • v.9 no.2
    • /
    • pp.46-54
    • /
    • 2021
  • Recently, interest in the safety of Self-driving has been increasing. Self-driving have been studied and developed by many universities, research centers, car companies, and companies of other industries around the world since the middle 1980s. In this study, we propose the automatic extraction method of the threatening obstacle on the Road for the Self-driving. A threatening obstacle is defined in this study as a comparatively large object at center of the image. First of all, an input image and its decreased resolution images are segmented. Segmented areas are classified as the outer or the inner area. The outer area is adjacent to boundaries of the image and the other is not. Each area is merged with its neighbors when adjacent areas are included by a same area in the decreased resolution image. The Obstacle area and Non Obstacle area are selected from the inner area and outer area respectively. Obstacle areas are the representative areas for the obstacle and are selected by using the information about the area size and location. The Obstacle area and Non Obstacle area consist of the threatening obstacle on the road. Through experiments, we expect that the proposed method will be able to reduce accidents and casualties in Self-driving.

The Line Feature Extraction for Automatic Cartography Using High Frequency Filters in Remote Sensing : A Case Study of Chinju City (위성영상의 형태추출을 통한 지도화 : 고빈도 공간필터 사용을 중심으로)

  • Jung, In-Chul
    • Journal of the Korean association of regional geographers
    • /
    • v.2 no.2
    • /
    • pp.183-196
    • /
    • 1996
  • The purpose of this paper is to explore the possibility of automatic extraction of line feature from Satellite image. The first part reviews the relationship between spatial filtering and cartographic interpretation. The second part describes the principal operations of high frequency filters and their properties, the third part presents the result of filtering application to the SPOT Panchromatic image of the Chinju city. Some experimental results are given here indicating the high feasibility of the filtering technique. The results of the paper is summarized as follows: Firstly the good all-purposes filter dose not exist. Certain laplacian filter and Frei-chen filter were very sensitive to the noise and could not detect line features in our case. Secondly, summary filters and some other filters do an excellent job of identifying edges around urban objects. With the filtered image added to the original image, the interpretation is more easy. Thirdly, Compass gradient masks may be used to perform two-dimensional, discrete differentiation directional edge enhancement, however, in our case, the line featuring was not satisfactory. In general, the wide masks detect the broad edges and narrow masks are used to detect the sharper discontinuities. But, in our case, the difference between the $3{\times}3$ and $7{\times}7$ kernel filters are not remarkable. It may be due to the good spatial resolution of Spot scene. The filtering effect depends on local circumstance. Band or kernel size selection must be also considered. For the skillful geographical interpretation, we need to take account the more subtle qualitative information.

  • PDF

Automatic Extraction of Roof Components from LiDAR Data Based on Octree Segmentation (LiDAR 데이터를 이용한 옥트리 분할 기반의 지붕요소 자동추출)

  • Song, Nak-Hyeon;Cho, Hong-Beom;Cho, Woo-Sug;Shin, Sung-Woong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.4
    • /
    • pp.327-336
    • /
    • 2007
  • The 3D building modeling is one of crucial components in building 3D geospatial information. The existing methods for 3D building modeling depend mainly on manual photogrammetric processes by stereoplotter compiler, which indeed take great amount of time and efforts. In addition, some automatic methods that were proposed in research papers and experimental trials have limitations of describing the details of buildings with lack of geometric accuracy. It is essential in automatic fashion that the boundary and shape of buildings should be drawn effortlessly by a sophisticated algorithm. In recent years, airborne LiDAR data representing earth surface in 3D has been utilized in many different fields. However, it is still in technical difficulties for clean and correct boundary extraction without human intervention. The usage of airborne LiDAR data will be much feasible to reconstruct the roof tops of buildings whose boundary lines could be taken out from existing digital maps. The paper proposed a method to reconstruct the roof tops of buildings using airborne LiDAR data with building boundary lines from digital map. The primary process is to perform octree-based segmentation to airborne LiDAR data recursively in 3D space till there are no more airborne LiDAR points to be segmented. Once the octree-based segmentation has been completed, each segmented patch is thereafter merged based on geometric spatial characteristics. The experimental results showed that the proposed method were capable of extracting various building roof components such as plane, gable, polyhedric and curved surface.

Automatic Extraction of Stomach from Abdominal CT Image and Volumetry (복부 CT 영상에서 위의 자동적인 추출 및 체적 계산)

  • Park, Seung-Ran;Park, Jong-Won;No, Seung-Mu
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.2
    • /
    • pp.124-131
    • /
    • 2001
  • 복부 CT 영상에서 위의 자동적인 추출에 대하여 연구하였다. 복부 CT 영상에서 여러 장기가 비슷한 명암 값을 나타내며 분포 해 있다. 본 논문에서는 복부 CT 영상의 여러 장기 가운데 위를 자동적으로 추출하는 알고리즘을 개발하였다. 위는 움직이는 장기이며, 음식물로 채워진 부분과 공기로 채원진 부분으로 나뉘어져 있다. 이를 바탕으로 히스토그램 분석을 통한 명암 값 정보와 위치 정보를 이용하여 위를 탐색하고, 주변 다른 장기를 제거하는 다듬기 과정으로 완전한 위 추출 알고리즘을 완성하였다. 또한 돼지 실험에서 추출된 위의 체적을 비교하여, 개발된 알고리즘의 정확성을 검증한 결과 약 95%의 정확도를 보였다.

  • PDF

Implementation of Image-Retrieval System Using Automatic Object Region Extraction and Property of GLCM-based Texture (자동 객체 영역 추출과 GLCM 기반 Texture특징을 이용한 영상 검색 시스템 구현)

  • Kim, Seong-Bin
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.255-257
    • /
    • 2008
  • 본 논문에서는 최근 IT 기술의 발전에 따라 무수히 양산되고 있는 멀티미디어 데이터를 효율적으로 검색하기 위한 방법을 제안한다. 영상 검색 시스템에 사용되는 데이터베이스(DB) 영상들에 존재하는 각 객체들의 존재 영역을 기반으로 질의 영상 (query image)의 객체 영역을 추정해서 검색에 활용하는 것이다. 이는 질의 영상의 전체 영역으로부터 객체를 추정하는 것보다 데이터베이스 영상들로부터 추출한 통계적 객체 분포 범위를 기반으로 추정하기 때문에 빨리 객체 추출이 가능하도록 한다. 따라서 객체를 추출하기 위한 배경 지식이나, 사용자 입력이 전혀 필요 없다. 이렇게 추출된 객체 영역의 영상들로부터 GLCM 알고리즘을 이용해서 객체 영역의 특성이 잘 반영된 질감 특징 값을 바탕으로 검색에 활용 할 경우 원본 영상의 질감 특징을 활용한 경우보다, 객체의 질감 특징을 더 잘 반영한다는 것을 실험을 통해 확인할 수 있었다.

  • PDF

Automatic Contour Extraction for Multiple Objects in the Images with Complex Background (복잡배경에서 다중 물체 윤곽선의 자동 검출)

  • 최재혁;서경석;박은진;최홍문
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.891-894
    • /
    • 2001
  • 본 논문에서는 NTGST (noise·tolerant generalized symmetry transform)와 snake를 이용하여 복잡배경으로부터 여러 물체의 윤곽선을 동시에 검출하는 방법을 제안하였다. 먼저 NTCST의 대칭도 맵(symmetry map)을 이용하여 복잡한 배경에 혼재하는 여러 물체들의 위치를 찾은 다음, 이들 각 물체에 snake의 초기 윤곽들을 자동 설정해 줌으로써 기존 snake 알고리즘의 초기 윤곽 설정의 어려움과 다중 물체 윤곽선 검출의 어려움을 동시에 해결하였다. 이때 NTGST의 대칭도 맵으로부터 설정된 snake의 초기 윤곽은 실제 물체의 윤곽선 가까이에 위치할 뿐만 아니라 물체의 형태를 잘 반영하므로 요철이 있는 물체의 윤곽선도 기존의 방법보다 적은 반복횟수로 정확하게 검출 할 수 있다. 다양한 합성 영상과 실영상에 적용한 결과 복잡배경으로부터도 다중 물체의 윤곽선을 효과적으로 추출함을 확인하였다.

  • PDF

A Study on the Feature Region Segmentation for the Analysis of Eye-fundus Images (안저영상 해석을 위한 특징영역의 분할에 관한 연구)

  • 강전권;한영환
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.2
    • /
    • pp.121-128
    • /
    • 1995
  • Information about retinal blood vessels can be used in grading disease severity or as part of the process of automated diagnosis of diseases with ocular menifestations. In this paper, we address the problem of detecting retinal blood vessels and optic disk (papilla) in eye-fundus images. We introduce an algorithm for feature extraction based on Fuzzy Clustering algorithm (fuzzy c-means). A method of finding the optic disk (papilla) is proposed in the eye-fundus images. Additionally, the inrormations such as position and area of the optic disk are extracted. The results are compared to those obtained from other methods. The automatic detection of retinal blood vessels and optic disk in the eye-rundus images could help physicians in diagnosing ocular diseases.

  • PDF

Automatic Extraction of Kilometer Posts using a Mobile Mapping System (모바일매핑시스템을 이용한 거리표 자동 추출에 관한 연구)

  • Jeong, Jae-Seung;Jeong, Dong-Hoon;Kim, Byung-Guk;Sung, Jung-Gon
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.318-323
    • /
    • 2007
  • 모바일매핑시스템은 차량에 CCD카메라, GPS IMU등의 장비를 탑재하고 도로 및 주변지역의 영상을 획득하여 지도제작 및 도로 도로시설물의 유지관리를 위한 시스템이다. 그러나 모바일매핑시스템의 자료는 자료의 양이 방대하여 지도제작 및 시설물 관리에 사용되기 위해서는 일차적인 가공이나 편집이 필요하다. 모바일매핑시스템은 대상물의 위치 및 영상정보를 획득할 수 있는 효율적인 시스템으로 도로 시설물의 유지 관리, 수치지도의 갱신 등 여러 분야에서 활용되고 있다. 이러한 모바일매핑시스템은 CCD 카메라 영상과 차량의 위치 및 자세정보를 제공하게 되고 이는 영상안의 객체에 대한 위치정보를 제공하는데 중요한 역할을 한다. 그러므로 본 연구에서는 모바일매핑시스템을 이용하여 영상내부에 나타난 거리표의 3차원 위치를 결정하고자 한다. 또 도로관리통합시스템의 핵심 키가 되는 거리표의 3차원 정보를 자동으로 추출함으로써 모바일매핑시스템의 방대한 정보를 효율적으로 처리하기 위한 방법을 알아볼 것이다.

  • PDF