• Title/Summary/Keyword: Automatic Information Extraction

Search Result 592, Processing Time 0.03 seconds

SuperDepthTransfer: Depth Extraction from Image Using Instance-Based Learning with Superpixels

  • Zhu, Yuesheng;Jiang, Yifeng;Huang, Zhuandi;Luo, Guibo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4968-4986
    • /
    • 2017
  • In this paper, we primarily address the difficulty of automatic generation of a plausible depth map from a single image in an unstructured environment. The aim is to extrapolate a depth map with a more correct, rich, and distinct depth order, which is both quantitatively accurate as well as visually pleasing. Our technique, which is fundamentally based on a preexisting DepthTransfer algorithm, transfers depth information at the level of superpixels. This occurs within a framework that replaces a pixel basis with one of instance-based learning. A vital superpixels feature enhancing matching precision is posterior incorporation of predictive semantic labels into the depth extraction procedure. Finally, a modified Cross Bilateral Filter is leveraged to augment the final depth field. For training and evaluation, experiments were conducted using the Make3D Range Image Dataset and vividly demonstrate that this depth estimation method outperforms state-of-the-art methods for the correlation coefficient metric, mean log10 error and root mean squared error, and achieves comparable performance for the average relative error metric in both efficacy and computational efficiency. This approach can be utilized to automatically convert 2D images into stereo for 3D visualization, producing anaglyph images that are visually superior in realism and simultaneously more immersive.

Judgment about the Usefulness of Automatically Extracted Temporal Information from News Articles for Event Detection and Tracking (사건 탐지 및 추적을 위해 신문기사에서 자동 추출된 시간정보의 유용성 판단)

  • Kim Pyung;Myaeng Sung-Hyon
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.6
    • /
    • pp.564-573
    • /
    • 2006
  • Temporal information plays an important role in natural language processing (NLP) applications such as information extraction, discourse analysis, automatic summarization, and question-answering. In the topic detection and tracking (TDT) area, the temporal information often used is the publication date of a message, which is readily available but limited in its usefulness. We developed a relatively simple NLP method of extracting temporal information from Korean news articles, with the goal of improving performance of TDT tasks. To extract temporal information, we make use of finite state automata and a lexicon containing time-revealing vocabulary. Extracted information is converted into a canonicalized representation of a time point or a time duration. We first evaluated the extraction and canonicalization methods for their accuracy and investigated on the extent to which temporal information extracted as such can help TDT tasks. The experimental results show that time information extracted from text indeed helps improve both precision and recall significantly.

Automatic Extraction of the Land Readjustment Paddy for High-level Land Cover Classification (토지 피복 세분류를 위한 경지 정리 논 자동 추출)

  • Yeom, Jun Ho;Kim, Yong Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.5
    • /
    • pp.443-450
    • /
    • 2014
  • To fulfill the recent increasement in the public and private demands for various spatial data, the central and local governments started to produce those data. The low-level land cover map has been produced since 2000, yet the production of high-level land covered map has started later in 2010, and recently, a few regions was completed recently. Although many studies have been carried to improve the quality of land that covered in the map, most of them have been focused on the low-level and mid-level classifications. For that reason, the study for high-level classification is still insufficient. Therefore, in this study, we suggested the automatic extraction of land readjustment for paddy land that updated in the mid-level land mapping. At the study, the RapidEye satellite images, which consider efficient to apply in the agricultural field, were used, and the high pass filtering emphasized the outline of paddy field. Also, the binary images of the paddy outlines were generated from the Otsu thresholding. The boundary information of paddy field was extracted from the image-to-map registrations and masking of paddy land cover. Lastly, the snapped edges were linked, as well as the linear features of paddy outlines were extracted by the regional Hough line extraction. The start and end points that were close to each other were linked to complete the paddy field outlines. In fact, the boundary of readjusted paddy fields was able to be extracted efficiently. We could conclude in that this study contributed to the automatic production of a high-level land cover map for paddy fields.

Automatic Lower Extremity Vessel Extraction based on Bone Elimination Technique in CT Angiography Images (CT 혈관 조영 영상에서 뼈 소거법 기반의 하지 혈관 자동 추출)

  • Kim, Soo-Kyung;Hong, Helen
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.12
    • /
    • pp.967-976
    • /
    • 2009
  • In this paper, we propose an automatic lower extremity vessel extraction based on rigid registration and bone elimination techniques in CT and CT angiography images. First, automatic partitioning of the lower extremity based on the anatomy is proposed to consider the local movement of the bone. Second, rigid registration based on distance map is performed to estimate the movement of the bone between CT and CT angiography images. Third, bone elimination and vessel masking techniques are proposed to remove bones in CT angiography image and to prevent the vessel near to bone from eroding. Fourth, post-processing based on vessel tracking is proposed to reduce the effect of misalignment and noises like a cartilage. For the evaluation of our method, we performed the visual inspection, accuracy measures and processing time. For visual inspection, the results of applying general subtraction, registered subtraction and proposed method are compared using volume rendering and maximum intensity projection. For accuracy evaluation, intensity distributions of CT angiography image, subtraction based method and proposed method are analyzed. Experimental result shows that bones are accurately eliminated and vessels are robustly extracted without the loss of other structure. The total processing time of thirteen patient datasets was 40 seconds on average.

A Study on High-Speed Extraction of Bar Code Region for Parcel Automatic Identification (소포 자동식별을 위한 바코드 관심영역 고속 추출에 관한 연구)

  • Park, Moon-Sung;Kim, Jin-Suk;Kim, Hye-Kyu;Jung, Hoe-Kyung
    • The KIPS Transactions:PartD
    • /
    • v.9D no.5
    • /
    • pp.915-924
    • /
    • 2002
  • Conventional Systems for parcel sorting consist of two sequences as loading the parcel into conveyor belt system and post-code input. Using bar code information, the parcels to be recorded and managed are recognized. This paper describes a 32 $\times$ 32 sized mini-block inspection to extract bar code Region of Interest (ROI) from the line Charged Coupled Device (CCD) camera capturing image of moving parcel at 2m/sec speed. Firstly, the Min-Max distribution of the mini-block has been applied to discard the background of parcel and region of conveying belts from the image. Secondly, the diagonal inspection has been used for the extraction of letters and bar code region. Five horizontal line scanning detects the number of edges and sizes and ROI has been acquired from the detection. The wrong detected area has been deleted by the comparison of group size from labeling processes. To correct excluded bar code region in mini-block processes and for analysis of bar code information, the extracted ROI 8 boundary points and decline distribution have been used with central axis line adjustment. The ROI extraction and central axis creation have become enable within 60~80msec, and the accuracy has been accomplished over 99.44 percentage.

Automatic hand gesture area extraction and recognition technique using FMCW radar based point cloud and LSTM (FMCW 레이다 기반의 포인트 클라우드와 LSTM을 이용한 자동 핸드 제스처 영역 추출 및 인식 기법)

  • Seung-Tak Ra;Seung-Ho Lee
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.486-493
    • /
    • 2023
  • In this paper, we propose an automatic hand gesture area extraction and recognition technique using FMCW radar-based point cloud and LSTM. The proposed technique has the following originality compared to existing methods. First, unlike methods that use 2D images as input vectors such as existing range-dopplers, point cloud input vectors in the form of time series are intuitive input data that can recognize movement over time that occurs in front of the radar in the form of a coordinate system. Second, because the size of the input vector is small, the deep learning model used for recognition can also be designed lightly. The implementation process of the proposed technique is as follows. Using the distance, speed, and angle information measured by the FMCW radar, a point cloud containing x, y, z coordinate format and Doppler velocity information is utilized. For the gesture area, the hand gesture area is automatically extracted by identifying the start and end points of the gesture using the Doppler point obtained through speed information. The point cloud in the form of a time series corresponding to the viewpoint of the extracted gesture area is ultimately used for learning and recognition of the LSTM deep learning model used in this paper. To evaluate the objective reliability of the proposed technique, an experiment calculating MAE with other deep learning models and an experiment calculating recognition rate with existing techniques were performed and compared. As a result of the experiment, the MAE value of the time series point cloud input vector + LSTM deep learning model was calculated to be 0.262 and the recognition rate was 97.5%. The lower the MAE and the higher the recognition rate, the better the results, proving the efficiency of the technique proposed in this paper.

Smart Home Healthcare Device based on Ubiquitous Communication

  • Kim, Keun-Young;Cha, Joo-Hun;Park, Mig-Non
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2235-2239
    • /
    • 2003
  • The aim of this research is to study and develop enabling technologies for home healthcare device with ubiquitous network. The motivation of this paper is to enable healthcare in home, to development the device for smart home health care. To achieve the aim, we must develop the prototype platform based on home gateways, distributed context user interface based on UPnP and support for information sharing with high speed power line communication and mobile infra-structures. And IPv6 is the base technology of this platform. In this paper, we concern that physical health, mental health and medical emergencies is all of home healthcare. With the smart device, we evaluate the connectivity, automatic information extraction and private data exchange and event driven message. The result of this paper is demonstration of smart device for ubiquitous communication in a healthcare application such as patient monitoring device and several information services. In conclusion, home healthcare will support more healthy and easy living for a human.

  • PDF

Implementation of Drowsiness Driving Warning System based on Improved Eyes Detection and Pupil Tracking Using Facial Feature Information (얼굴 특징 정보를 이용한 향상된 눈동자 추적을 통한 졸음운전 경보 시스템 구현)

  • Jeong, Do Yeong;Hong, KiCheon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.5 no.2
    • /
    • pp.167-176
    • /
    • 2009
  • In this paper, a system that detects driver's drowsiness has been implemented based on the automatic extraction and the tracking of pupils. The research also focuses on the compensation of illumination and reduction of background noises that naturally exist in the driving condition. The system, that is based on the principle of Haar-like feature, automatically collects data from areas of driver's face and eyes among the complex background. Then, it makes decision of driver's drowsiness by using recognition of characteristics of pupils area, detection of pupils, and their movements. The implemented system has been evaluated and verified the practical uses for the prevention of driver's drowsiness.

Recognition and Evaluation of Efficient Language Analysis Unit for Korean (한국어에서 실용적 언어분석 단위의 인식과 평가)

  • 박인철
    • Journal of the Korea Computer Industry Society
    • /
    • v.5 no.1
    • /
    • pp.65-76
    • /
    • 2004
  • In this paper, we observe the differences between linguistic and computational aspect in the automatic processing of languages which are dominant representation method for information in the Internet. For efficient information retrieval, information extraction and machine translation from the massive documents, we investigate analysis units for morphology analysis, syntactic analysis and semantic analysis. and propose the syntactic longest analysis unit rather than morphological unit based on linguistics. Also, by evaluating with massive documents, we show that the proposed analysis units can be used for the constraint which can reduce the ambiguity occurring in the language processing.

  • PDF

Three Dimensional Segmentation in PCNN

  • Nishi, Naoya;Tanaka, Masaru;Kurita, Takio
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.802-805
    • /
    • 2002
  • In the three-dimensional domain image expressed with two-dimensional slice images, such as fMRI images and multi-slice CT images, we propose the three-dimensional domain automatic segmentation for the purpose of extracting region. In this paper, we segmented each domain from the fMRI images of the head of people and monkey. We used the neural network "Pulse-Coupled Neural Network" which is one of the models of visual cortex of the brain based on the knowledge from neurophysiology as the technique. By using this technique, we can segment the region without any learning. Then, we reported the result of division of each domain and extraction to the fMRI slice images of human's head using "three-dimensional Pulse-Coupled Neural Network" which is arranged and created the neuron in the shape of a three-dimensional lattice.

  • PDF