• 제목/요약/키워드: Automatic Grading Mushroom

검색결과 11건 처리시간 0.023초

Intelligent Automatic Sorting System For Dried Oak Mushrooms

  • Lee, C.H.;Hwang, H.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1996년도 International Conference on Agricultural Machinery Engineering Proceedings
    • /
    • pp.607-614
    • /
    • 1996
  • A computer vision based automatic intelligent sorting system for dried oak mushrooms has been developed. The developed system was composed of automatic devices for mushroom feeding and handling, two sets of computer vision system for grading , and computer with digital I/O board for PLC interface, and pneumatic actuators for the system control. Considering the efficiency of grading process and the real time on-line system implementation, grading was done sequentially at two consecutive independent stages using the captured image of either side. At the first stage, four grades of high quality categories were determined from the cap surface images and at the second stage 8 grades of medium and low quality categories were determined from the gill side images. The previously developed neuro-net based mushroom grading algorithm which allowed real time on-line processing was implemented and tested. Developed system revealed successful performance of sorting capability of approximate y 5, 000 mushrooms/hr per each line i.e. average 0.75 sec/mushroom with the grading accuracy of more than 88%.

  • PDF

건표고 자동 등급선별 시스템 개발 -시작 2호기- (Development of Automatic Grading and Sorting System for Dry Oak Mushrooms -2nd Prototype-)

  • 황헌;김시찬;임동혁;송기수;최태현
    • Journal of Biosystems Engineering
    • /
    • 제26권2호
    • /
    • pp.147-154
    • /
    • 2001
  • In Korea and Japan, dried oak mushrooms are classified into 12 to 16 different categories based on its external visual quality. And grading used to be done manually by the human expert and is limited to the randomly sampled oak mushrooms. Visual features of dried oak mushrooms dominate its quality and are distributed over both sides of the gill and the cap. The 2nd prototype computer vision based automatic grading and sorting system for dried oak mushrooms was developed based on the 1st prototype. Sorting function was improved and overall system for grading was simplified to one stage grading instead of two stage grading by inspecting both front and back sides of mushrooms. Neuro-net based side(gill or cap) recognition algorithm of the fed mushroom was adopted. Grading was performed with both images of gill and cap using neural network. A real time simultaneous discharge algorithm, which is good for objects randomly fed individually and for multi-objects located along a series of discharge buckets, was developed and implemented to the controller and the performance was verified. Two hundreds samples chosen from 10 samples per 20 grade categories were used to verify the performance of each unit such as feeding, reversing, grading, and discharging unites. Test results showed that success rates of one-line feeding, reversing, grading, and discharging functions were 93%, 95%, 94%, and 99% respectively. The developed prototype revealed successful performance such as the approximate sorting capability of 3,600 mushrooms/hr per each line i.e. average 1sec/mushroom. Considering processing time of approximate 0.2 sec for grading, it was desired to reduce time to reverse a mushroom to acquire the reversed surface image.

  • PDF

Automatic Visual Feature Extraction And Measurement of Mushroom (Lentinus Edodes L.)

  • Heon-Hwang;Lee, C.H.;Lee, Y.K.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1993년도 Proceedings of International Conference for Agricultural Machinery and Process Engineering
    • /
    • pp.1230-1242
    • /
    • 1993
  • In a case of mushroom (Lentinus Edodes L.) , visual features are crucial for grading and the quantitative evaluation of the growth state. The extracted quantitative visual features can be used as a performance index for the drying process control or used for the automatic sorting and grading task. First, primary external features of the front and back sides of mushroom were analyzed. And computer vision based algorithm were developed for the extraction and measurement of those features. An automatic thresholding algorithm , which is the combined type of the window extension and maximum depth finding was developed. Freeman's chain coding was modified by gradually expanding the mask size from 3X3 to 9X9 to preserve the boundary connectivity. According to the side of mushroom determined from the automatic recognition algorithm size thickness, overall shape, and skin texture such as pattern, color (lightness) ,membrane state, and crack were quantified and measured. A portion of t e stalk was also identified and automatically removed , while reconstructing a new boundary using the Overhauser curve formulation . Algorithms applied and developed were coded using MS_C language Ver, 6.0, PC VISION Plus library functions, and VGA graphic function as a menu driven way.

  • PDF

양면영상을 이용한 온라인 검표고 등급판정 시스템 개발 (Development of On-line Grading System Using Two Surface Images of Dried Oak Mushrooms)

  • 황헌;이충호;김시찬
    • Journal of Biosystems Engineering
    • /
    • 제24권2호
    • /
    • pp.153-158
    • /
    • 1999
  • As a basic research for the development of the automatic grading and sorting system for dried oak mushrooms, the device to acquire both cap and gill side images of mushroom has been developed and neural network based side recognition and quality grading has been proposed via inputting both side images. 20 quality grades have been selected considering the requirement of grade classifications imposed by the mushroom company. Developed DC motor driven‘V’type reversing device for the image acquisition of both side images of mushroom showed more than 95% success. Most error was caused by very small size mushrooms with a radius of around 1cm. However, it required a further research to reduce the reversing time. Grading and side recognition were performed via inputting normalized size factors and average gray levels of $8{\times}8$ grids converted from the raw images of both surfaces to the multi-layer back propagation(BP) network. Accuracy of the grading showed about 88.5% and the total grading time including reversing operation was around 2 seconds.

  • PDF

Development of On-line Quality Sorting System for Dried Oak Mushroom - 3rd Prototype-

  • 김철수;김기동;조기현;이정택;김진현
    • Agricultural and Biosystems Engineering
    • /
    • 제4권1호
    • /
    • pp.8-15
    • /
    • 2003
  • In Korea, quality evaluation of dried oak mushrooms are done first by classifying them into more than 10 different categories based on the state of opening of the cap, surface pattern, and colors. And mushrooms of each category are further classified into 3 or 4 groups based on its shape and size, resulting into total 30 to 40 different grades. Quality evaluation and sorting based on the external visual features are usually done manually. Since visual features of mushroom affecting quality grades are distributed over the entire surface of the mushroom, both front (cap) and back (stem and gill) surfaces should be inspected thoroughly. In fact, it is almost impossible for human to inspect every mushroom, especially when they are fed continuously via conveyor. In this paper, considering real time on-line system implementation, image processing algorithms utilizing artificial neural network have been developed for the quality grading of a mushroom. The neural network based image processing utilized the raw gray value image of fed mushrooms captured by the camera without any complex image processing such as feature enhancement and extraction to identify the feeding state and to grade the quality of a mushroom. Developed algorithms were implemented to the prototype on-line grading and sorting system. The prototype was developed to simplify the system requirement and the overall mechanism. The system was composed of automatic devices for mushroom feeding and handling, a set of computer vision system with lighting chamber, one chip microprocessor based controller, and pneumatic actuators. The proposed grading scheme was tested using the prototype. Network training for the feeding state recognition and grading was done using static images. 200 samples (20 grade levels and 10 per each grade) were used for training. 300 samples (20 grade levels and 15 per each grade) were used to validate the trained network. By changing orientation of each sample, 600 data sets were made for the test and the trained network showed around 91 % of the grading accuracy. Though image processing itself required approximately less than 0.3 second depending on a mushroom, because of the actuating device and control response, average 0.6 to 0.7 second was required for grading and sorting of a mushroom resulting into the processing capability of 5,000/hr to 6,000/hr.

  • PDF

버섯 전후면과 꼭지부 상태의 자동 인식 (Automatic Recognition of the Front/Back Sides and Stalk States for Mushrooms(Lentinus Edodes L.))

  • 황헌;이충호
    • Journal of Biosystems Engineering
    • /
    • 제19권2호
    • /
    • pp.124-137
    • /
    • 1994
  • Visual features of a mushroom(Lentinus Edodes, L.) are critical in grading and sorting as most agricultural products are. Because of its complex and various visual features, grading and sorting of mushrooms have been done manually by the human expert. To realize the automatic handling and grading of mushrooms in real time, the computer vision system should be utilized and the efficient and robust processing of the camera captured visual information be provided. Since visual features of a mushroom are distributed over the front and back sides, recognizing sides and states of the stalk including the stalk orientation from the captured image is a prime process in the automatic task processing. In this paper, the efficient and robust recognition process identifying the front and back side and the state of the stalk was developed and its performance was compared with other recognition trials. First, recognition was tried based on the rule set up with some experimental heuristics using the quantitative features such as geometry and texture extracted from the segmented mushroom image. And the neural net based learning recognition was done without extracting quantitative features. For network inputs the segmented binary image obtained from the combined type automatic thresholding was tested first. And then the gray valued raw camera image was directly utilized. The state of the stalk seriously affects the measured size of the mushroom cap. When its effect is serious, the stalk should be excluded in mushroom cap sizing. In this paper, the stalk removal process followed by the boundary regeneration of the cap image was also presented. The neural net based gray valued raw image processing showed the successful results for our recognition task. The developed technology through this research may open the new way of the quality inspection and sorting especially for the agricultural products whose visual features are fuzzy and not uniquely defined.

  • PDF

Neuro-Net Based Automatic Sorting And Grading of A Mushroom (Lentinus Edodes L)

  • Hwang, H.;Lee, C.H.;Han, J.H.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1993년도 Proceedings of International Conference for Agricultural Machinery and Process Engineering
    • /
    • pp.1243-1253
    • /
    • 1993
  • Visual features of a mushroom(Lentinus Edodes L) are critical in sorting and grading as most agricultural products are. Because of its complex and various visual features, grading and sorting of mushrooms have been done manually by the human expert. Though actions involved in human grading looks simple, a decision making undereath the simple action comes form the results of the complex neural processing of the visual image. And processing details involved in the visual recognition of the human brain has not been fully investigated yet. Recently, however, an artificial neural network has drawn a great attention because of its functional capability as a partial substitute of the human brain. Since most agricultural products are not uniquely defined in its physical properties and do not have a well defined job structure, a research of the neuro-net based human like information processing toward the agricultural product and processing are widely open and promising. In this pape , neuro-net based grading and sorting system was developed for a mushroom . A computer vision system was utilized for extracting and quantifying the qualitative visual features of sampled mushrooms. The extracted visual features and their corresponding grades were used as input/output pairs for training the neural network and the trained results of the network were presented . The computer vision system used is composed of the IBM PC compatible 386DX, ITEX PFG frame grabber, B/W CCD camera , VGA color graphic monitor , and image output RGB monitor.

  • PDF

표고 외관 특징점의 자동 추출 및 측정 (Automatic Extraction and Measurement of Visual Features of Mushroom (Lentinus edodes L.))

  • 황헌;이용국
    • 생물환경조절학회지
    • /
    • 제1권1호
    • /
    • pp.37-51
    • /
    • 1992
  • Quantizing and extracting visual features of mushroom(Lentinus edodes L.) are crucial to the sorting and grading automation, the growth state measurement, and the dried performance indexing. A computer image processing system was utilized for the extraction and measurement of visual features of front and back sides of the mushroom. The image processing system is composed of the IBM PC compatible 386DK, ITEX PCVISION Plus frame grabber, B/W CCD camera, VGA color graphic monitor, and image output RGB monitor. In this paper, an automatic thresholding algorithm was developed to yield the segmented binary image representing skin states of the front and back sides. An eight directional Freeman's chain coding was modified to solve the edge disconnectivity by gradually expanding the mask size of 3$\times$3 to 9$\times$9. A real scaled geometric quantity of the object was directly extracted from the 8-directional chain element. The external shape of the mushroom was analyzed and converted to the quantitative feature patterns. Efficient algorithms for the extraction of the selected feature patterns and the recognition of the front and back side were developed. The developed algorithms were coded in a menu driven way using MS_C language Ver.6.0, PC VISION PLUS library fuctions, and VGA graphic functions.

  • PDF

컴퓨터시각과 신경회로망에 의한 표고등급의 자동판정 (Computer Vision and Neuro- Net Based Automatic Grading of a Mushroom(Lentinus Edodes L.))

  • Hwang, Heon;Lee, Choongho;Han, Joonhyun
    • 생물환경조절학회지
    • /
    • 제3권1호
    • /
    • pp.42-51
    • /
    • 1994
  • 대다수 농산물과 마찬가지로 건조표고의 등급판정은 외관특징에 주로 의존한다. 표고 갓의 전후면에 걸친 복잡하고 다양한 외관특징들로 인하여 표고의 등급판정은 임의로 추출한 표고샘플에 대하여 전문가가 수작업으로 판정하고 있으며, 선별작업 역시 전적으로 수작업에 의존하고 있다. 단순한 반복작업으로 보이는 농산물의 등급판정은 사실 시각과 촉각을 위시한 고도의 감각신경계를 통하여 상호 복잡하게 얽혀 들어오는 정보를 지능적으로 처리하는 고기능의 작업이다. 농산물의 경우, 외관특성을 비롯한 물성은 종류별로 그 경계치를 일괄적으로 명확하게 규정할 수 없기 때문에 대개는 오차를 포함한 통계적 접근에 의하여 규정하고 있다. 따라서 농산작업에 있어서는 농산물 물성이 갖는 모호성을 효율적으로 처리할 수 있는 가변적인 작업구조 및 정보처리가 필수적으로 요구된다. 본 연구에서는 인간 뇌의 정보처리 기능을 부분적으로 구현할 수 있는 인공신경회로망을 컴퓨터 시각 시스템에 적용하여 단순 기하도형의 분류 및 표고의 등급판정을 성공적으로 수행하였다. 회로망 입력으로는 컴퓨터시각 시스템을 이용하여 건조표고의 정성적 외관특징을 자동으로 추출한 후 정량화한 특징점 값들을 이용하였다. 신경회로망의 학습은 표본 추출한 등급표고와 이들의 정량적 특징점 값들을 입출력 쌍으로 하여 수행하였다. 학습한 회로망의 등급판정 성능시험은 표본추출한 미지의 표고에 대한 컴퓨터 영상 특징점 값들을 입력하여 수행하였다.

  • PDF

인터넷을 이용한 건표고 등급선별장치의 원격제어 및 관리 시스템 개발 (Development of Remote Control and Management System for Dried Mushroom Grader via Internet)

  • 최태현;황헌
    • Journal of Biosystems Engineering
    • /
    • 제24권3호
    • /
    • pp.267-274
    • /
    • 1999
  • An internet and network based software and related interface have been developed, which can remotely control and manage an on-site operating system. Developed software modules were composed of two parts: monitoring/management modules and control/diagnosis modules were developed for the network status, warehouse, production and selling status. Modules of control with diagnosis were developed for the on-site operating system and interface. Each module was integrated and the whole modules have been tested with an automatic mushroom grading/sorting system which was built in a laboratory. Developed software modules worked successfully without any uncommon situations such as system down caused by the software or data transfer error. Each software module was developed independently in order to apply easily to other existing on-site systems such as rice processing centers, fruit and vegetable sorting, packaging and distribution centers scattered over the country.

  • PDF