• Title/Summary/Keyword: Automatic Emergency Braking System

Search Result 14, Processing Time 0.021 seconds

Analysis for Traffic Accident of the Bus with Advanced Driver Assistance System (ADAS) (첨단안전장치 장착 버스의 사고사례 분석)

  • Park, Jongjin;Choi, Youngsoo;Park, Jeongman
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.3
    • /
    • pp.78-85
    • /
    • 2021
  • Recently a traffic accident of heavy duty vehicles under the mandatory installation of ADAS (Advanced Driver Assistance System) is often reported in the media. Heavy duty vehicle accidents are normally occurring a high number of passenger's injury. According to report of Insurance Institute for Highway Safety, FCW (Forward Collision Warning) and AEB (Automatic Emergency Braking) were associated with a statistically significant 12% reduction in the rate of police-reportable crashes per vehicle miles traveled, and a significant 41% reduction in the rear-end crash rate of large trucks. Also many countries around the world, including Korea, are studying the effects of ADAS installation on accident reduction. Traffic accident statistics of passenger vehicle for business purpose in TMACS (Traffic safety information Management Complex System in Korea) tends to remarkably reduce the number of deaths due to the accident (2017(211), 2018(170), 2019(139)), but the number of traffic accidents (2017(8,939), 2018(9,181), 2019(10,095)) increases. In this paper, it is introduced a traffic accident case that could lead to high injury traffic accidents by being equipped with AEB in a bus. AEB reduces accidents and damage in general but malfunction of AEB could occur severe accident. Therefore, proper education is required to use AEB system, simply instead of focusing on developing and installing AEB to prevent traffic accidents. Traffic accident of AEB equipped vehicle may arise a new dispute between a driver's fault and vehicle defect. It is highly recommended to regulate an advanced event data recorder system.

AEBS Evaluation Scenario Including Cut in Situation (끼어들기 상황에서의 자동비상제동장치 평가 시나리오 개발)

  • Park, M.Y.;Park, Y.G.;Lee, E.D.;Shin, J.G.;Jeong, J.I.
    • Journal of Auto-vehicle Safety Association
    • /
    • v.9 no.3
    • /
    • pp.46-52
    • /
    • 2017
  • In this study, safety evaluation scenarios on "cut-in" situation are presented to assess the performance of automatic emergency braking systems. The ASSESS project in EU is surveyed for derive efficient test scenarios for cut-in situation. The TASS database are also analyzed to find representative accident scenarios in Korea. With the results of the ASSESS and TASS, the safety evaluation scenarios in cut-in situations are suggested and the scenarios are tested with simulation software PRESCAN.

Development of Personal Mobility Safety Driving Assistance System Using CNN-Based Object Detection and Boarding Detection Sensor (합성곱 신경망 기반 물체 인식과 탑승 감지 센서를 이용한 개인형 이동수단 주행 안전 보조 시스템 개발)

  • Son, Kwon Joong;Bae, Sung Hoon;Lee, Hyun June
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.10
    • /
    • pp.211-218
    • /
    • 2021
  • A recent spread of personal mobility devices such as electric kickboards has brought about a rapid increase in accident cases. Such vehicles are susceptible to falling accidents due to their low dynamic stability and lack of outer protection chassis. This paper presents the development of an automatic emergency braking system and a safe starting system as driving assistance devices for electric kickboards. The braking system employed artificial intelligence to detect nearby threaening objects. The starting system was developed to disable powder to the motor until when the driver's boarding is confirmed. This study is meaningful in that it proposes the convergence technology of advanced driver assistance systems specialized for personal mobility devices.

Study on the Speed Control Code Design for Fixed Block TCS (고정폐색 열차제어시스템 속도제어코드 설계에 관한 연구)

  • Lee, Kang-Mi;Shin, Kyung-Ho;Shin, Duc-Ko;Lee, Jae-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.1
    • /
    • pp.37-41
    • /
    • 2012
  • Kyung-Bu High Speed Railway is operated in train control system(tcs) of fixed block operated in a way of dividing track circuits into several blocks in accordance with operation circumstances such as rolling stocks, grade, curves and facilities. The TCS of fixed block system refers to a continuous train control system, which transfers operational information such as entry and exit speed, distance-to-go, and deceleration etc. into on-board train control equipment on the basis of block occupancy of a preceding train. It guarantees a safe operation of trains by giving an emergency braking order, in case that a train exceeds an entry and exit speed of a corresponding block. In this paper, we analyze the speed control code deducing in accordance with maximum operation speed and characteristics of rolling stocks by analyzing principles of generation of speed control code allocated in blocks for safe operation, then train operational efficiency was analyzed by means of analysis of operation headway in accordance with the deduced speed control code. This study will be used to design in case of getting an increase in speed for existing high speed line or new high speed line TCS.