• Title/Summary/Keyword: Automatic Diagnosis

Search Result 360, Processing Time 0.027 seconds

The combination of a histogram-based clustering algorithm and support vector machine for the diagnosis of osteoporosis

  • Kavitha, Muthu Subash;Asano, Akira;Taguchi, Akira;Heo, Min-Suk
    • Imaging Science in Dentistry
    • /
    • v.43 no.3
    • /
    • pp.153-161
    • /
    • 2013
  • Purpose: To prevent low bone mineral density (BMD), that is, osteoporosis, in postmenopausal women, it is essential to diagnose osteoporosis more precisely. This study presented an automatic approach utilizing a histogram-based automatic clustering (HAC) algorithm with a support vector machine (SVM) to analyse dental panoramic radiographs (DPRs) and thus improve diagnostic accuracy by identifying postmenopausal women with low BMD or osteoporosis. Materials and Methods: We integrated our newly-proposed histogram-based automatic clustering (HAC) algorithm with our previously-designed computer-aided diagnosis system. The extracted moment-based features (mean, variance, skewness, and kurtosis) of the mandibular cortical width for the radial basis function (RBF) SVM classifier were employed. We also compared the diagnostic efficacy of the SVM model with the back propagation (BP) neural network model. In this study, DPRs and BMD measurements of 100 postmenopausal women patients (aged >50 years), with no previous record of osteoporosis, were randomly selected for inclusion. Results: The accuracy, sensitivity, and specificity of the BMD measurements using our HAC-SVM model to identify women with low BMD were 93.0% (88.0%-98.0%), 95.8% (91.9%-99.7%) and 86.6% (79.9%-93.3%), respectively, at the lumbar spine; and 89.0% (82.9%-95.1%), 96.0% (92.2%-99.8%) and 84.0% (76.8%-91.2%), respectively, at the femoral neck. Conclusion: Our experimental results predict that the proposed HAC-SVM model combination applied on DPRs could be useful to assist dentists in early diagnosis and help to reduce the morbidity and mortality associated with low BMD and osteoporosis.

Study on Trouble Diagnosis of Stacker Crane by Case Base Inference (사례추론에 의한 S/C 이상진단에 관한 연구)

  • Kim, Dong-Hun;Song, Jun-Yeop
    • 연구논문집
    • /
    • s.25
    • /
    • pp.99-104
    • /
    • 1995
  • At present, a lot of researches on AS/RS(Automatic Storage and Retrival System) are being performed and also applied to realization of FA, FMS and CIM. Especially facility management and diagnosis of stacker crane that is major equipment of AS/RS, is recognized more importantly. In this paper, Case Base is designed for manager that is non-expert and it is implemented according to possible trouble case for the purpose of trouble diagnosis and maintenance of stacker crane.

  • PDF

A Study of the Atrial Arrhythmia Diagnosis Algorithm (심방성 부정맥 진단 알고리즘에 관한 연구)

  • 황선철
    • Journal of Biomedical Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.17-24
    • /
    • 1989
  • This papaer presents a new algorithm for the P-wave detection in the ECG signal. Digital differentiation method (7-point derivative) is used for detecting P-waves exactly. This algorithm can detect various parameters of PR, PP, RR interval, which are important to diagnosis AV blocks and WPW syndrome. Especially, this algorithm can detect P-waves very efficiently not only in well-preprocessed waves but in pccr waves with noise and artifact. And it enables to develope more reliable automatic diagnosis algorithm.

  • PDF

Basic Research for the Recognition Algorithm of Tongue Coatings for Implementing a Digital Automatic Diagnosis System (디지털 자동 설진 시스템 구축을 위한 설태 인식 알고리즘 기초 연구)

  • Kim, Keun-Ho;Ryu, Hyun-Hee;Kim, Jong-Yeol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.1
    • /
    • pp.97-103
    • /
    • 2009
  • The status and the property of a tongue are the important indicators to diagnose one's health like physiological and clinicopathological changes of inner organs. However, the tongue diagnosis is affected by examination circumstances like a light source, patient's posture, and doctor's condition. To develop an automatic tongue diagnosis system for an objective and standardized diagnosis, classifying tongue coating is inevitable but difficult since the features like color and texture of the tongue coatings and substance have little difference, especially in the neighborhood on the tongue surface. The proposed method has two procedures; the first is to acquire the color table to classify tongue coatings and substance by automatically separating coating regions marked by oriental medical doctors, decomposing the color components of the region into hue, saturation and brightness and obtaining the 2nd order discriminant with statistical data of hue and saturation corresponding to each kind of tongue coatings, and the other is to apply the tongue region in an input image to the color table, resulting in separating the regions of tongue coatings and classifying them automatically. As a result, kinds of tongue coatings and substance were segmented from a face image corresponding to regions marked by oriental medical doctors and the color table for classification took hue and saturation values as inputs and produced the classification of the values into white coating, yellow coating and substance in a digital tongue diagnosis system. The coating regions classified by the proposed method were almost the same to the marked regions. The exactness of classification was 83%, which is the degree of correspondence between what Oriental medical doctors diagnosed and what the proposed method classified. Since the classified regions provide effective information, the proposed method can be used to make an objective and standardized diagnosis and applied to an ubiquitous healthcare system. Therefore, the method will be able to be widely used in Oriental medicine.

Automatic Machine Fault Diagnosis System using Discrete Wavelet Transform and Machine Learning

  • Lee, Kyeong-Min;Vununu, Caleb;Moon, Kwang-Seok;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1299-1311
    • /
    • 2017
  • Sounds based machine fault diagnosis recovers all the studies that aim to detect automatically faults or damages on machines using the sounds emitted by these machines. Conventional methods that use mathematical models have been found inaccurate because of the complexity of the industry machinery systems and the obvious existence of nonlinear factors such as noises. Therefore, any fault diagnosis issue can be treated as a pattern recognition problem. We present here an automatic fault diagnosis system of hand drills using discrete wavelet transform (DWT) and pattern recognition techniques such as principal component analysis (PCA) and artificial neural networks (ANN). The diagnosis system consists of three steps. Because of the presence of many noisy patterns in our signals, we first conduct a filtering analysis based on DWT. Second, the wavelet coefficients of the filtered signals are extracted as our features for the pattern recognition part. Third, PCA is performed over the wavelet coefficients in order to reduce the dimensionality of the feature vectors. Finally, the very first principal components are used as the inputs of an ANN based classifier to detect the wear on the drills. The results show that the proposed DWT-PCA-ANN method can be used for the sounds based automated diagnosis system.

Studies of Automatic Dental Cavity Detection System as an Auxiliary Tool for Diagnosis of Dental Caries in Digital X-ray Image (디지털 X-선 영상을 통한 치아우식증 진단 보조 시스템으로써 치아 와동 자동 검출 프로그램 연구)

  • Huh, Jangyong;Nam, Haewon;Kim, Juhae;Park, Jiman;Shin, Sukyoung;Lee, Rena
    • Progress in Medical Physics
    • /
    • v.26 no.1
    • /
    • pp.52-58
    • /
    • 2015
  • The automated dental cavity detection program for a new concept intra-oral dental x-ray imaging device, an auxiliary diagnosis system, which is able to assist a dentist to identify dental caries in an early stage and to make an accurate diagnosis, was to be developed. The primary theory of the automatic dental cavity detection program is divided into two algorithms; one is an image segmentation skill to discriminate between a dental cavity and a normal tooth and the other is a computational method to analyze feature of an tooth image and take an advantage of it for detection of dental cavities. In the present study, it is, first, evaluated how accurately the DRLSE (Direct Regularized Level Set Evolution) method extracts demarcation surrounding the dental cavity. In order to evaluate the ability of the developed algorithm to automatically detect dental cavities, 7 tooth phantoms from incisor to molar were fabricated which contained a various form of cavities. Then, dental cavities in the tooth phantom images were analyzed with the developed algorithm. Except for two cavities whose contours were identified partially, the contours of 12 cavities were correctly discriminated by the automated dental caries detection program, which, consequently, proved the practical feasibility of the automatic dental lesion detection algorithm. However, an efficient and enhanced algorithm is required for its application to the actual dental diagnosis since shapes or conditions of the dental caries are different between individuals and complicated. In the future, the automatic dental cavity detection system will be improved adding pattern recognition or machine learning based algorithm which can deal with information of tooth status.

Implementation of Radial Pulse Diagnosis System using Inyoung-Cheongu Comparison Method (인영.촌구 대비법을 이용한 맥 진단 시스템 구현)

  • Lee, Ho-Jae;Park, Young-Bae;Huh, Woong
    • Journal of Biomedical Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.73-80
    • /
    • 1993
  • This paper describes the implementation of a computerized radial pulse diagnosis by Elds of a clinical expert. On this base, we composed of the radial pulse diagnosis system in korean traditional medicine. The system composed of a radial pulse wave detection system and a radial pulse diag nosis system. With a detection system, we detected Inyoung and Cheongu radial pulse wave and processed It. Then, we have got the characteristic parameters of radial pulse wave and also quantified thats according to the method of Inyoung-Cheongu Comparison Radial Pulse Diagnosis. We defined the jugement standard of radial Pulse diagnosis system and then we confirmed the PossibiliLy for realization of automatic radial Pulse diagnosis in korean traditional medicine.

  • PDF

Immobilization of Heparin onto the Polyurethane

  • Cho, Chong-Su;Kim, Sung-Wan
    • Journal of Biomedical Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.147-150
    • /
    • 1986
  • This paper describes the implementation of a computerized radial pulse diagnosis by aids of a clinical expert. On this base, we composed of the radial pulse diagnosis system in korean traditional medicine. The system composed of a radial pulse wave detection system and a radial pulse diagnosis system. With a detection system, we detected Inyoung and Cheongu radial pulse wave and processed it. Then, we have got the characteristic parameters of radial pulse wave and also quantified that according to the method of Inyoung-Cheongu Comparison Radial Pulse Diagnosis. We defined the jugement standard of radial pulse diagnosis system and then we confirmed the possibility for realization of automatic radial pulse diagnosis in korean traditional medicine.

  • PDF

Development of Fuzzy Rule-based Liver Function Test Diagnosis System (퍼지 규칙기반 간 기능 검사 해석 시스템의 개발)

  • Kim, Jong-Won;Oh, Kyung-Whan
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.05
    • /
    • pp.155-160
    • /
    • 1992
  • Liver function test is one of the most common tests for diagnosis and follow-up of patients and for heal th screening. Automatic interpretation and suggestions on the diagnostic possibilities contribute to shorten the interpretation time of the test results and help to provide qualified health care. Fuzzy logic has been recently introduced and being spread for these purposes. The present study aims at model Ins the foray rule-based laboratory diagnosis system. The fuzzy rule-based laboratory diagnosis system was applied to the diagnosis regarding liver function test. The system was evaluated by comparing with the stepwise multivariate discriminant function analysis, which showed similar results, and the overall accuracy of the fuzzy diagnosis system was about 80%.

  • PDF

Computer-Aided Vibration Signal Processing and Fault Monitoring System of Electrical-Fan Motors (컴퓨터를 이용한 선풍기모터의 진동신호처리 및 이상진단에 관한 연구)

  • Sin, Jung-Ho;Hwang, Gi-Hyeon;Choe, Yeong-Hyu;Park, Ju-Hyeok
    • 한국기계연구소 소보
    • /
    • s.17
    • /
    • pp.61-68
    • /
    • 1987
  • The main objective of this paper is to develop the computer-aided vibrational signal processing and monitoring system of rotating machinery. This system has an automatic data acquisition capability and analyze for machine fault diagnosis. By spectrum analysis, machine’s failure can be identified. The monitoring system enables diagnosis of the fault in rotating machinery. In this study, the conventional electrical fans are selected as a model case. The date processing and fault monitoring system proposed here can be applied to the automation of the inspection process in assembling motor-shaft systems. The automatic inspection can enhance the product quality and keep it stable. Since the proposed system is developed for personal computers, it might be cheap in cost and easy in installation.

  • PDF