• Title/Summary/Keyword: Automatic Detection of GUI Bad Symptom

Search Result 1, Processing Time 0.016 seconds

Automatic Detection of Usability Issues on Mobile Applications (모바일 앱에서의 사용자 행동 모델 기반 GUI 사용성 저해요소 검출 기법)

  • Ma, Kyeong Wook;Park, Sooyong;Park, Soojin
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.7
    • /
    • pp.319-326
    • /
    • 2016
  • Given the attributes of mobile apps that shorten the time to make purchase decisions while enabling easy purchase cancellations, usability can be regarded to be a highly prioritized quality attribute among the diverse quality attributes that must be provided by mobile apps. With that backdrop, mobile app developers have been making great effort to minimize usability hampering elements that degrade the merchantability of apps in many ways. Most elements that hamper the convenience in use of mobile apps stem from those potential errors that occur when GUIs are designed. In our previous study, we have proposed a technique to analyze the usability of mobile apps using user behavior logs. We proposes a technique to detect usability hampering elements lying dormant in mobile apps' GUI models by expressing user behavior logs with finite state models, combining user behavior models extracted from multiple users, and comparing the combined user behavior model with the expected behavior model on which the designer's intention is reflected. In addition, to reduce the burden of the repeated test operations that have been conducted by existing developers to detect usability errors, the present paper also proposes a mobile usability error detection automation tool that enables automatic application of the proposed technique. The utility of the proposed technique and tool is being discussed through comparison between the GUI issue reports presented by actual open source app developers and the symptoms detected by the proposed technique.