• Title/Summary/Keyword: Automatic Defect Detection

Search Result 68, Processing Time 0.025 seconds

A Study on Technical Development of Ultrasonic Test for Application of Industrial Fields (산업체 적용을 위한 초음파 검사 기술 개발에 관한 연구)

  • Yi, Won;Yun, In-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.8
    • /
    • pp.49-56
    • /
    • 1997
  • In recent years, ultrasonic technics has been widely applied to industrial fields and its application range has been expanded as a result of continuous research and development. This paper is concerned with development of post-processor program for ultrasonic test and two-axis automatic ultrasonic system for application of industrial fields. Test results of ultrasonic test post-processor program and two-axis auto- matic ultrasonic system have a good agreement with results of ultrasonic evaluation for defect detection in industrial fields. Therefore we think that the developed ultrasonic test post-processor program and two- axis automatic ultrasonic system in this work is very useful for application of industrial fields.

  • PDF

Automatic Defect Detection and Classification Using PCA and QDA in Aircraft Composite Materials (주성분 분석과 이차 판별 분석 기법을 이용한 항공기 복합재료에서의 자동 결함 검출 및 분류)

  • Kim, Young-Bum;Shin, Duk-Ha;Hwang, Seung-Jun;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.4
    • /
    • pp.304-311
    • /
    • 2014
  • In this paper, we propose a ultra sound inspection technique for automatic defect detection and classification in aircraft composite materials. Using local maximum values of ultra sound wave, we choose peak values for defect detection. Distance data among peak values are used to construct histogram and to determine surface and back-wall echo from the floor of composite materials. C-scan image is then composed through this method. A threshold value is determined by average and variance of the peak values, and defects are detected by the values. PCA(principal component analysis) and QDA(quadratic discriminant analysis) are carried out to classify the types of defects. In PCA, 512 dimensional data are converted into 30 PCs(Principal Components), which is 99% of total variances. Computational cost and misclassification rate are reduced by limiting the number of PCs. A decision boundary equation is obtained by QDA, and defects are classified by the equation. Experimental result shows that our proposed method is able to detect and classify the defects automatically.

Development of Automated Non-Destructive Ultrasonic Inspection Equipment for Welding Crack Inspection (용접크랙검사용 비파괴 초음파탐상 자동화검사장비 개발)

  • Chai, Yong-Yoong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.1
    • /
    • pp.101-106
    • /
    • 2020
  • This research is related to a development of the ultrasonic detector for an internal defect detection of various assembly part's welding zone. In this research, measurement S/Ws including system's motion control, S/W ultrasonic transmitter/receiver control, defect judgment standard setting, etc. have been designed for ultrasonic detection, and welding defects sample network, etc. were also designed for comparison between products in good condition and defective products. Through this kind of system, automatic detection function can be performed for the depth and the defect location of the assembly parts welding zone, and the system is able to make a judgment of internal defect detection which is used to be performed by an expert in the past.

A Sobel Operator Combined with Patch Statistics Algorithm for Fabric Defect Detection

  • Jiang, Jiein;Jin, Zilong;Wang, Boheng;Ma, Li;Cui, Yan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.687-701
    • /
    • 2020
  • In the production of industrial fabric, it needs automatic real-time system to detect defects on the fabric for assuring the defect-free products flow to the market. At present, many visual-based methods are designed for detecting the fabric defects, but they usually lead to high false alarm. Base on this reason, we propose a Sobel operator combined with patch statistics (SOPS) algorithm for defects detection. First, we describe the defect detection model. mean filter is applied to preprocess the acquired image. Then, Sobel operator (SO) is applied to deal with the defect image, and we can get a coarse binary image. Finally, the binary image can be divided into many patches. For a given patch, a threshold is used to decide whether the patch is defect-free or not. Finally, a new image will be reconstructed, and we did a loop for the reconstructed image to suppress defects noise. Experiments show that the proposed SOPS algorithm is effective.

The Development of Surface Inspection System Using the Real-time Image Processing (실시간 영상처리를 이용한 표면흠검사기 개발)

  • 이종학;박창현;정진양
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.171-171
    • /
    • 2000
  • We have developed m innovative surface inspection system for automated quality control for steel products in POSCO. We had ever installed the various kinds of surface inspection systems, such as a linear CCD and a laser typed surface inspection systems at cold rolled strips production lines. But, these systems cannot fulfill the sufficient detection and classification rate, and real time processing performance. In order to increase detection and classification rate, we have used the Dark, Bright and Transition Field illumination and area type CCD camera, and fur the real time image processing, parallel computing has been used. In this paper, we introduced the automatic surface inspection system and real time image processing technique using the Object Detection, Defect Detection, Classification algorithms and its performance obtained at the production line.

  • PDF

Automatic Detection of Texture-defects using Texture-periodicity and Jensen-Shannon Divergence

  • Asha, V.;Bhajantri, N.U.;Nagabhushan, P.
    • Journal of Information Processing Systems
    • /
    • v.8 no.2
    • /
    • pp.359-374
    • /
    • 2012
  • In this paper, we propose a new machine vision algorithm for automatic defect detection on patterned textures with the help of texture-periodicity and the Jensen-Shannon Divergence, which is a symmetrized and smoothed version of the Kullback-Leibler Divergence. Input defective images are split into several blocks of the same size as the size of the periodic unit of the image. Based on histograms of the periodic blocks, Jensen-Shannon Divergence measures are calculated for each periodic block with respect to itself and all other periodic blocks and a dissimilarity matrix is obtained. This dissimilarity matrix is utilized to get a matrix of true-metrics, which is later subjected to Ward's hierarchical clustering to automatically identify defective and defect-free blocks. Results from experiments on real fabric images belonging to 3 major wallpaper groups, namely, pmm, p2, and p4m with defects, show that the proposed method is robust in finding fabric defects with a very high success rates without any human intervention.

Development of Image Defect Detection Model Using Machine Learning (기계 학습을 활용한 이미지 결함 검출 모델 개발)

  • Lee, Nam-Yeong;Cho, Hyug-Hyun;Ceong, Hyi-Thaek
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.3
    • /
    • pp.513-520
    • /
    • 2020
  • Recently, the development of a vision inspection system using machine learning has become more active. This study seeks to develop a defect inspection model using machine learning. Defect detection problems for images correspond to classification problems, which are the method of supervised learning in machine learning. In this study, defect detection models are developed based on algorithms that automatically extract features and algorithms that do not extract features. One-dimensional CNN and two-dimensional CNN are used as algorithms for automatic extraction of features, and MLP and SVM are used as algorithms for non-extracting features. A defect detection model is developed based on four models and their accuracy and AUC compare based on AUC. Although image classification is common in the development of models using CNN, high accuracy and AUC is achieved when developing SVM models by converting pixels from images into RGB values in this study.

Implementation of Automatic Detection System for CCFL's Defects based on Combined Lighting (조합조명 기반 CCFL 불량판별 자동화 시스템 구현)

  • Moon, Chang-Bae;Ahn, Young-Hoon;Lee, Hae-Yeoun;Kim, Byeong-Man;Oh, Duk-Whan
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.15 no.2
    • /
    • pp.69-81
    • /
    • 2010
  • A Cold Cathode Fluorescent Lamp(CCFL) is used as a LCD Monitor's backlight widely. The most common way to check CCFL's defects is an examination with the naked eye. This naked eye examination can cause an examination inconsistency and an industrial disaster. To examine CCFL defects, a shooting equipment and a defect detection algorithm are necessary. This paper shows the shooting environments for checking CCFL and presents some CCFL defect detection algorithms. As a result of experiments, our implementations showed 98.32% of successful defect detection of CCFL.

Rail Surface Defect Detection System of Next-Generation High Speed Train (차세대 고속열차의 레일표면 결함 검출 시스템)

  • Choi, Woo-Yong;Kim, Jeong-Yeon;Yang, Il-Dong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.5
    • /
    • pp.870-876
    • /
    • 2017
  • In this paper, we proposed the automatic vision inspection system using multi-layer perceptron to detect the defects occurred on rail surface. The proposed system consists of image acquisition part and analysis part. Rail surface image is acquired as equal interval using line scan camera and lighting. Mean filter and dynamic threshold is used to reduce noise and segment defect area. Various features to characterize the defects are extracted. And they are used to train and distinguish defects by MLP-classifier. The system is installed on HEMU-430X and applied to analyze the rail surface images acquired from Honam-line at high speed up to 300 km/h. Recognition rate is calculated through comparison with manual inspection results.

Wavelet-based feature extraction for automatic defect classification in strands by ultrasonic structural monitoring

  • Rizzo, Piervincenzo;Lanza di Scalea, Francesco
    • Smart Structures and Systems
    • /
    • v.2 no.3
    • /
    • pp.253-274
    • /
    • 2006
  • The structural monitoring of multi-wire strands is of importance to prestressed concrete structures and cable-stayed or suspension bridges. This paper addresses the monitoring of strands by ultrasonic guided waves with emphasis on the signal processing and automatic defect classification. The detection of notch-like defects in the strands is based on the reflections of guided waves that are excited and detected by magnetostrictive ultrasonic transducers. The Discrete Wavelet Transform was used to extract damage-sensitive features from the detected signals and to construct a multi-dimensional Damage Index vector. The Damage Index vector was then fed to an Artificial Neural Network to provide the automatic classification of (a) the size of the notch and (b) the location of the notch from the receiving sensor. Following an optimization study of the network, it was determined that five damage-sensitive features provided the best defect classification performance with an overall success rate of 90.8%. It was thus demonstrated that the wavelet-based multidimensional analysis can provide excellent classification performance for notch-type defects in strands.