• Title/Summary/Keyword: Automated synthesizer

Search Result 9, Processing Time 0.02 seconds

Development of an Automated Synthesizer for the Routine Production of Ga-68 Radiopharmaceuticals (임상용 Ga-68 표지 방사성의약품의 합성을 위한 자동합성장치 개발)

  • Jun Young PARK;Jeongmin SON;Won Jun KANG
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.55 no.4
    • /
    • pp.253-260
    • /
    • 2023
  • The germanium-68/gallium-68 (68Ge/68Ga) generator has high spatial utilization and requires little maintenance, making it economical and easy to produce. Thus, the frequency of use of 68Ga radiopharmaceuticals is rapidly increasing worldwide. Therefore, this study attempted to develop an automated synthesizer for the routine clinical application of 68Ga radiopharmaceuticals. The automated synthesizer was based on a fixed tubing system and the structure was designed after adjusting the position of the parts to reflect the synthesis method. Using various components that can be supplied in Korea, the automated synthesizer was manufactured at a much lower price cost than that of a commercialized automated synthesizer sold by companies. 68Ga-DOTA-[Tyr3]-octreotide (68Ga-DOTATOC) was synthesized to evaluate the performance of the automated synthesizer. 68Ga-DOTATOC could be synthesized with about 65% of non-decay corrected yield, and the synthesized 68Ga-DOTATOC met all quality control standards. We have synthesized 68Ga-DOTATOC more than 100 times, and only faced a few problems caused by mechanical errors. In this study, we successfully developed a simple automated synthesizer for 68Ga radiopharmaceuticals with high reproducibility. As various 68Ga radiopharmaceuticals have recently been developed, it is expected that the automated synthesizer developed in this study will be useful for routine clinical use.

The Development of Radiopharmaceutical Synthesizer and its FDG Synthesis Verification

  • Jong Min Kim;Il Koo Cheong;Chan Soo Park;Hee Seup Kil;Cheol Soo Lee
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.8 no.2
    • /
    • pp.87-93
    • /
    • 2022
  • [18F]FDG is known as the most widely used radiopharmaceutical in the imaging field of nuclear medicine worldwide. With the introduction of PET equipment, the demand for [18F]FDG has increased and the production volume has also increased. However, in order to increase production, the use of 18F radioisotope must be increased or [18F]FDG must be synthesized in high yield. Therefore, in order to meet the high yield and purity of radiopharmaceuticals, a radiopharmaceutical automatic synthesizer was required. As the use of [18F]FDG increased, automated synthesizer manufacturers supplied various types of radiopharmaceutical automated synthesizers to the market. In this study, we developed a commercialized [18F]FDG radiopharmaceutical automatic synthesizer (sCUBE FDG) using a disposable cassette type that complies with GMP developed by FutureChem, a leading radiopharmaceutical company. We used sCUBE FDG to verify the production process, radiopharmaceutical's quality (radiochemical purity, etc.), and radiochemical yield of [18F]FDG. As a result of optimizing the automatic synthesis process and synthesizing a total of 30 times, the production time was 35 ± 3 minutes and the average production yield was 65.6%.

A Study on Minimizing the Residual $^{18}F$-FDG in the Tubing Using Nitrogen Gas (FDG 합성 후 질소가스를 이용한 튜빙의 잔류 $^{18}F$-FDG 최소화를 위한 방법의 유용성)

  • Kim, Dong-Il;Park, Hoon;Seok, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.8-12
    • /
    • 2010
  • Purpose: In $^{18}F$-FDG automated synthesizer, deliver is done in automated mode after synthesis until the dispenser. After the delivery, the yield is calculated from the radioactivity which was read by the dose calibrator located in the dispenser. However, when the distance between the automated synthesizer and the dispenser is far, there are $^{18}F$-FDG residues, which results in loss of the amount of $^{18}F$-FDG. This study investigated the usefulness of a method that minimizes $^{18}F$-FDG residues. Materials and Methods: The structure of the tubing between the (TRACERlab Mx FDG; GE.) and the dispenser is that the distance is 8 m and the internal diameter is 1/16 inch. The synthesis process of The module goes through the synthesis process of trap, synthesis, delivery in the automated module. The time taken for synthesis is about 25 to 26 minutes, after which rinsing is done. However, after rinsing, as the distance of the tubing increased, there were 10~13% of $^{18}F$-FDG residues. Therefore, a method of using push syringe and $N_2$ gas in manual mode to minimize $^{18}F$-FDG residues is analyzed. Results: In manual mode, there were $^{18}F$-FDG residues of 4~5% for the push syringe, and there were $^{18}F$-FDG residues of less than 1% for the $N_2$ gas, which showed that the method using $N_2$ gas had superior usefulness. Also, there were no $^{18}F$-FDG residues in the cleaning the next day. Conclusion: The distance between the synthesizer and the dispenser needs to be reduced as much as possible, to reduce the rate of loss of $^{18}F$-FDG resulting from the distance of the tubing. However, in case the distance between the synthesizer and the dispenser has to be increased due to the system structure, using push syringe and $N_2$ gas simultaneously is a useful method for minimizing $^{18}F$-FDG residues.

  • PDF

Development of a Synthetic Method for [68Ga]Ga-FAPI-04 Using a Cassette-based Synthesizer (카세트 기반 자동합성장치를 사용한 [68Ga]Ga-FAPI-04의 합성방법 연구)

  • Jun Young PARK;Won Jun KANG
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.56 no.1
    • /
    • pp.43-51
    • /
    • 2024
  • [68Ga]Ga-FAPI-04 is a promising radiopharmaceutical that binds specifically to fibroblast activation protein, which is overexpressed in more than 90% of malignant epithelial tumors but not in normal healthy tissue. This study aimed to develop an efficient method for producing 68Ga-labelled FAPI-04 using a cassette-based automated synthesizer. [68Ga]GaCl3 was eluted from an Eckert & Ziegler Medical germanium-68/gallium-68 generator using 2.5 mL of 0.1 M HCl. The synthesis of the [68Ga]Ga-FAPI-04 was performed using different concentrations of HEPES (1~2.5 M; 4-(2-hydroxyethyl) piperazine-1-ethanesulfonic acid) in 3~10 minutes; amounts of FAPI-04 precursor (5~50 ㎍) and reaction temperature (25℃~100℃) were optimized on the BIKBox® synthesizer. The labeling efficiency of [68Ga]Ga-FAPI-04 was greater than 96% (decay corrected) using 25 ㎍ FAPI-04 synthesized in 10 minutes at 100℃ in 2 M HEPES (pH 3.85), and its stability was greater than 99% at 6 hours. The total synthesis time of [68Ga]Ga-FAPI-04 was 32.4 minutes, and the product met all quality control criteria. In this study, we developed and optimized a labeling method using [68Ga]Ga-FAPI-04 using a cassette-based synthesizer. The devised method is expected to be useful for supplying [68Ga]Ga-FAPI-04 for diagnosis in clinical practice.

Reliable preparation of [11C]GR205171, a selective NK1 radioligands for noninvasive imaging

  • Park, Jae-kyung;Cho, Young Jin;Lee, Sang-Yoon
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.5 no.2
    • /
    • pp.158-162
    • /
    • 2019
  • [11C]GR205171, a Neurokinin 1 (NK1) radioligand, has been known as such a promising PET probe for quantitation of NK1 receptors in the brain by positron emission tomography (PET) imaging. First trial to synthesis of [11C]GR205171 was to use methylene chloride and tetrabutylammonium hydroxide for preactivation of precursor, but the result was not successful in radiochemical yield (0~25%) and unreliable. 7 years later, inorganic base (Cs2CO3) was tried to achieve higher radiochemical yield, and they showed higher yield (~53%). We have tried to repeat the same synthesis method, but it did not work properly, because there were the lack of the detail procedure and still reproducibility in radiochemical yield. Here we report the improved synthesis protocol to produce [11C]GR205171 in high yield via commercial automated synthesizer. The sonicator which combines water heating bath was used to activate desmethyl-GR205171, and this method showed high efficiency and reasonable yields (4.7 ± 0.6%, non-decay corrected from molecular sieve trap) with >95% radiochemical purity.

A Study on Design and Implementation of Hangul-NAVTEX Simulator (한글 NAVTEX시뮬레이터 설계 및 구현에 관한 연구)

  • 이헌택;김기문
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.4
    • /
    • pp.819-830
    • /
    • 1999
  • NAVTEX system is an international automated direct-printing service, broadcast on 5181kHz and 490kHz, for the promulgation of navigational and meteorological warnings and urgent information to ships. With our government's adoption of the international convention for SAR(Search and Rescue) in 1993, various trials for the installation of NAVTEX system have been executed by the government committee, relating laboratory and experts. An important consideration of the installation for NAVTEX system is the availability that could broadcast messages written in korean letter. Also, the receiver which can process the signal demodulated from the two frequencies, 518kHz and 490kHz, should be developed and supplied in domestic. In this paper, the code table and algorithm for conversions between NAVTEX characters and Korean Letters are studied, and signal processing techniques of code conversion are developed. Circuit design and implementation of the NAVTEX simulator using the Direct Digital Synthesizer are discussed, code conversion algorithm and signal processing technique of the NAVTEX transmission are programmed in its circuits. For evaluating the its functional characteristics, receiving module which has I-Q channel structure is designed. From the measurements of simulator, the characteristics show the frequency stability of the $(\pm)2Hz$ and Spurious free dynamic range is -63dBc. And the simulator can generate simultaneously wanted signal and several interfere signals. So, its capability is valuable for designers of the transmitting system and NAVTEX receiver, for provider as testing facilities of the type approval.

  • PDF

A Comparative Study of Production of [68Ga]PSMA-11 with or without Cassette Type Modules (비 카세트 방식과 카세트 방식을 이용한 [68Ga]PSMA-11의 자동 합성 방법 비교)

  • Hyun-Sik, Park;Byeong-Min, Jo;Hyun-Ho, An;Hong-Jin, Lee;Jin-Hyeong, Lee;Gyeong-Jae, Lee;Byung-Chul, Lee;Won-Woo, Lee
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.26 no.2
    • /
    • pp.15-19
    • /
    • 2022
  • Purpose [68Ga]PSMA-11 is needed the high reproducibility, excellent radiochemical yield and purity. In term of radiation safety, the radiation exposure of operator for its production also should be considered. In this work, we performed a comparative study for the fully automated synthesis of [68Ga]PSMA-11 between non-cassette type and cassette type. Materials and Methods Two different type of modules (TRACERlab FX N pro for non-cassette type and BIKBox for cassette type) were used for the automated production of [68Ga]PSMA-11. According to the previously identified elution profile, Only 2.5 ml with high radioactivity was used for the reaction. After adjusting the pH of the reaction solution with HEPES buffer solution, the precursor was added and reacted with at 95 ℃ for 15 minutes. The reaction mixture was separated and purified using a C18 light cartridge. The product was eluted with 50% EtOH/saline solution and diluted with saline. It was completed by sterilizing filter. In the non-cassette type, the aforementioned process must be prepared directly. However, in the cassette method, synthesis was possible simply by installing a kit that was already completed. Results Both total [68Ga]PSMA-11 production time were 25±3(non-cassette type) and 23±3 minutes(cassette type). The radiochemical yield of the non-cassette type(65.5±5.7%) was higher than that of the cassette type(61.6±4.8%) after sterilization filter. The non-cassette type took about 120 minutes of preparation time before synthesis due to washing of synthesizer and reagent preparation. However, since the cassette type does not require washing and reagent preparation, it took about 20 minutes to prepare before synthesis. Both type of synthesizer had a radiochemical high purity(>99%). Conclusion The non-cassette type production of [68Ga]PSMA-11 showed higher radiochemical yield and lower cost than the cassette type. However, The cassette type has an advantage in terms of preparation time, convenience, and equipment maintenance.

Automated Synthesis of [$^{18}F$]Fallypride for Routine Clinical Use (자동합성장치를 이용한 [$^{18}F$]Fallypride의 합성)

  • Park, Jun-Hyung;Moon, Byung-Seok;Lee, Hong-Jin;Lee, Hyo-Jun;Lee, In-Won;Lee, Byung-Chul;Kim, Sang-Eun
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.2
    • /
    • pp.104-109
    • /
    • 2010
  • Purpose: $[^{18}F]$Fallypride plays an effective radiotracer for the study of dopamine $D_2/D_3$ receptor occupancy, neuropsychiatric disorders and aging in humans. This tracer has the potential for clinical use, but automated labeling efficiency showed low radiochemical yields about 5~20% with relatively long labelling time of fluorine-18. In present study, we describe an improved automatic synthesis of [$^{18}F$]Fallypride using different base concentration for routine clinical use. Materials and Methods: Fully automated synthetic process of [$^{18}F$]Fallypride was perform using the TracerLab $FX_{FN}$ synthesizer under various labeling conditions and tosyl-fallypride was used as a precursor. [$^{18}F$]Fluoride was extracted with various concentration of $K_{2.2.2.}/K_2CO_3$ from $^{18}O$-enriched water trapped on the ion exchange cartridge. After azeotropic drying, the labeling reaction proceeded in $CH_3CN$ at $100^{\circ}C$ for 10 or 30 min. The reaction mixture was purified by reverse phase HPLC and collected organic solution was exchanged by tc-18 Sep-Pak for the clinically available solution. Results: The optimal labeling condition of [$^{18}F$]Fallypride in the automatic production was that 2 mg of tosyl-fallypride in acetonitrile (1 mL) was incubated at $100^{\circ}C$ for 10 min with $K_{2.2.2.}/K_2CO_3$ (11/0.8 mg). [$^{18}F$]Fallypride was obtained with high radiochemical yield about $66{\pm}1.4%$ (decay-corrected, n=28) within $51{\pm}1.2$ min including HPLC purification and solid-phase purification for the final formulation. Conclusion: [$^{18}F$]Fallypride was prepared with a significantly improved radiochemical yield with high specific activity and shorten synthetic time. In addition, this automated procedure provides the high reproducibility with no synthesis failures (n=28).

  • PDF

Optimization of Automated Solid Phase Extraction-based Synthesis of [18F]Fluorocholine (고체상 추출법을 기반으로 한 [18F]Fluorocholine 합성법의 최적화 연구)

  • Jun Young PARK;Jeongmin SON;Won Jun KANG
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.55 no.4
    • /
    • pp.261-268
    • /
    • 2023
  • [18F]Fluorocholine is a radiopharmaceutical used non-invasively in positron emission tomography to diagnose parathyroid adenoma, prostate cancer, and hepatocellular carcinoma by evaluating the choline metabolism. In this study, a radiolabeling method for [18F]fluorocholine was optimized using a solid phase extraction (SPE) cartridge. [18F]Fluorocholine was labeled in two steps using an automated synthesizer. In the first step, dibromomethane was reacted with [18F]KF/K2.2.2/K2CO3 to obtain the intermediate [18F]fluorobromomethane. In the second step, [18F]fluorobromomethane was passed through a Sep-Pak Silica SPE cartridge to remove the impurities and then reacted with N,N-dimethylaminoethanol (DMAE) in a Sep-Pak C18 SPE cartridge to label [18F]fluorocholine. The reaction conditions of [18F]fluorocholine were optimized. The synthesis yield was confirmed according to the number of silica cartridges and DMAE concentration. No statistically significant difference in the synthesis yield of [18F]fluorocholine was observed when using four or three silica cartridges (P>0.05). The labeling yield was 11.5±0.5% (N=4) when DMAE was used as its original solution. On the other hand, when diluted to 10% with dimethyl sulfoxide, the radiochemical yield increased significantly to 30.1±5.2% (N=20). In conclusion, [18F]Fluorocholine for clinical use can be synthesized stably in high yield by applying an optimized synthesis method.