• Title/Summary/Keyword: Automated structural analysis

Search Result 127, Processing Time 0.022 seconds

Design Sensitivity Analysis and Topology Optimization of Geometrically Nonlinear Structures (기하학적 비선헝 구조물의 설계 민감도해석 및 위상최적설계)

  • Cho, Seonho;Jung, Hyunseung;Yang, Youngsoon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.335-342
    • /
    • 2002
  • A continuum-based design sensitivity analysis (DSA) method fur non-shape problems is developed for geometrically nonlinear elastic structures. The non-shape problem is characterized by the design variables that are not associated with the domain of system like sizing, material property, loading, and so on. Total Lagrangian formulation with the Green-Lagrange strain and the second Piola-Kirchhoff stress is employed to describe the geometrically nonlinear structures. The spatial domain is discretized using the 4-node isoparametric plane stress/strain elements. The resulting nonlinear system is solved using the Newton-Raphson iterative method. To take advantage of the derived analytical sensitivity In topology optimization, a fast and efficient design sensitivity analysis method, adjoint variable method, is employed and the material property of each element is selected as non-shape design variable. Combining the design sensitivity analysis method and a gradient-based design optimization algorithm, an automated design optimization method is developed. The comparison of the analytical sensitivity with the finite difference results shows excellent agreement. Also application to the topology design optimization problem suggests a very good insight for the layout design.

  • PDF

ANALYZING DYNAMIC FAULT TREES DERIVED FROM MODEL-BASED SYSTEM ARCHITECTURES

  • Dehlinger, Josh;Dugan, Joanne Bechta
    • Nuclear Engineering and Technology
    • /
    • v.40 no.5
    • /
    • pp.365-374
    • /
    • 2008
  • Dependability-critical systems, such as digital instrumentation and control systems in nuclear power plants, necessitate engineering techniques and tools to provide assurances of their safety and reliability. Determining system reliability at the architectural design phase is important since it may guide design decisions and provide crucial information for trade-off analysis and estimating system cost. Despite this, reliability and system engineering remain separate disciplines and engineering processes by which the dependability analysis results may not represent the designed system. In this article we provide an overview and application of our approach to build architecture-based, dynamic system models for dependability-critical systems and then automatically generate dynamic fault trees (DFT) for comprehensive, tool-supported reliability analysis. Specifically, we use the Architectural Analysis and Design Language (AADL) to model the structural, behavioral and failure aspects of the system in a composite architecture model. From the AADL model, we seek to derive the DFT(s) and use Galileo's automated reliability analyses to estimate system reliability. This approach alleviates the dependability engineering - systems engineering knowledge expertise gap, integrates the dependability and system engineering design and development processes and enables a more formal, automated and consistent DFT construction. We illustrate this work using an example based on a dynamic digital feed-water control system for a nuclear reactor.

WIRELESS SENSOR NETWORK BASED BRIDGE MANAGEMENT SYSTEM FOR INFRASTRUCTURE ASSET MANAGEMENT

  • Jung-Yeol Kim;Myung-Jin Chae;Giu Lee;Jae-Woo Park;Moon-Young Cho
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1324-1327
    • /
    • 2009
  • Social infrastructure is the basis of public welfare and should be recognized and managed as important assets. Bridge is one of the most important infrastructures to be managed systematically because the impact of the failure is critical. It is essential to monitor the performance of bridges in order to manage them as an asset. But current analytical methods such as predictive modeling and structural analysis are very complicated and difficult to use in practice. To apply these methods, structural and material condition data collection should be performed in each element of bridge. But it is difficult to collect these detailed data in large numbers and various kinds of bridges. Therefore, it is necessary to collect data of major measurement items and predict the life of bridges roughly with advanced information technologies. When certain measurement items reach predefined limits in the monitoring bridges, precise performance measurement will be done by detailed site measurement. This paper describes the selection of major measurement items that can represent the tendency of bridge life and introduces automated bridge data collection test-bed using wireless sensor network technology. The following will be major parts of this paper: 1) Examining the features of conventional bridge management system and data collection method 2) Mileage concept as a bridge life indicator and measuring method of the indicator 3) Test-bed of automated and real-time based bridge life indicator monitoring system using wireless sensor network

  • PDF

Automated structural modal analysis method using long short-term memory network

  • Jaehyung Park;Jongwon Jung;Seunghee Park;Hyungchul Yoon
    • Smart Structures and Systems
    • /
    • v.31 no.1
    • /
    • pp.45-56
    • /
    • 2023
  • Vibration-based structural health monitoring is used to ensure the safety of structures by installing sensors in structures. The peak picking method, one of the applications of vibration-based structural health monitoring, is a method that analyze the dynamic characteristics of a structure using the peaks of the frequency response function. However, the results may vary depending on the person predicting the peak point; further, the method does not predict the exact peak point in the presence of noise. To overcome the limitations of the existing peak picking methods, this study proposes a new method to automate the modal analysis process by utilizing long short-term memory, a type of recurrent neural network. The method proposed in this study uses the time series data of the frequency response function directly as the input of the LSTM network. In addition, the proposed method improved the accuracy by using the phase as well as amplitude information of the frequency response function. Simulation experiments and lab-scale model experiments are performed to verify the performance of the LSTM network developed in this study. The result reported a modal assurance criterion of 0.8107, and it is expected that the dynamic characteristics of a civil structure can be predicted with high accuracy using data without experts.

A simple limit analysis procedure for reinforced concrete slabs using rigid finite elements

  • Ahmed, H.;Gilbert, M.
    • Structural Engineering and Mechanics
    • /
    • v.84 no.1
    • /
    • pp.129-141
    • /
    • 2022
  • It has previously been proposed that the yield-line method of analysis for reinforced concrete slabs could be automated via the use of rigid finite elements, assuming all deformations occur along element edges. However, the solutions obtained using this approach can be observed to be highly sensitive to mesh topology. To address this, a revised formulation that incorporates modified yield criteria to account for the presence of non-zero shear forces at interfaces between elements is proposed. The resulting formulation remains simple, with linear programming (LP) still used to obtain solutions for problems involving Johansen's square yield criteria. The results obtained are shown to agree well with literature solutions for various slab problems involving uniform loading and a range of geometries and boundary conditions.

Application of smart piezoelectric transducers to structural health monitoring (구조물 건전성 감시를 위한 스마트 PZT센서의 적용성 연구)

  • Park, Seung-Hee;Yi, Jin-Hak;Lee, Jong-Jae;Yun, Chung-Bang;Noh, Yong-Rae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.549-555
    • /
    • 2003
  • The objective of かis study is to investigate the feasibility of piezoelectric transducers as a damage detection system for civil infrastructures. There have been considerable amount of efforts by the modal analysis community to localize damage and evaluate its severity without looking at a reliable way to excite the structure. The detection of damages by modal analysis and similar vibration techniques depends upon the knowledge and estimation of various modal parameters. In addition to the associated difficulties, such low-frequency dynamic response based techniques fail to detect incipient damages. Smart piezoelectric ceramic (PZT) transducers which act as both actuators and sensors in a self-analyzing manner are emerging to be effective in non-parametric health monitoring of structural systems. In this paper, we present the results of an experimental study for the detection of damages using smart PZT transducers on the steel plate. The method of extracting the impedance characteristics of the PZT transducer, which is electro-mechanically coupled to the host structure, is adopted for damage detection. Two damages are simulated and assessed by the bonded PZT transducers for characterization. The experimental results verified the efficacy of the proposed approach and provided a demonstration of good robustness at the realistic steel structures, emphasizing the great potential for developing an automated in situ structural health monitoring system for application to large civil infrastructures without the need to blow the modal parameters.

  • PDF

On-line Finite Element Model Updating Using Operational Modal Analysis and Neural Networks (운용중 모드해석 방법과 신경망을 이용한 온라인 유한요소모델 업데이트)

  • Park, Wonsuk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.1
    • /
    • pp.35-42
    • /
    • 2021
  • This paper presents an on-line finite element model updating method for in-service structures using measured data. Conventional updating methods, which are based on numerical optimization, are not efficient for on-line updating because they generally require repeated eigenvalue analyses until convergence criteria are met. The proposed method enables fully automated on-line finite element model updating, almost simultaneously with vibration measurement, without any user intervention or off-line procedures. The automated covariance-driven stochastic subspace identification (Cov-SSI) method is utilized to identify modal frequencies and vectors, and the identified modal data is fed to the neural network of the inverse eigenvalue function to produce the updated finite element model parameters. Numerical examples for a wind excited 20-story building structure shows that the proposed method can update the series of finite element model parameters automatically. It is also shown that sudden changes in the structural parameters can be detected and traced successfully.

Precast Concrete Guideway of Automated Guideway Transit with Rubber Tire. (경량전철 고무차륜용 PC슬레브 궤도)

  • 조능호;정원기;이규정;윤태양;이안호
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.295-302
    • /
    • 2000
  • Slab guideway, surface treatment, heat line installation, and joint connection for Automated Guideway Transit with rubber tire are researched. While the AGT with rubber tire is constructed in city, the precast slab guideway must be considered a reduction of the construction period and the noise under construction. which related with environment. To do that, a basic design and the structural analysis for the precast slab guideway with rubber tire are studied. The surface treatment and the heat line installation of that are also compared with currently used methods. Tining method is applied to the surface treatment adopted from the concrete pavement application currently in use. The connection method between the slab of bridge and precast guideway are suggested with a bolt type and a bond type. To minimize noise and vibration of the connection while the AGT is in driving, the slop connection method can be enhanced the serviceability.

  • PDF

Automated Design of PSC Sleepers in High Speed Railway Turnouts (고속 철도 PSC 분기침목의 자동화설계)

  • 오병환;임시내;최영철
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.1106-1111
    • /
    • 2002
  • The design of sleeper in high-speed railway turnouts is complicated and time-consuming because the length and loading position of sleepers change continuously along the turnout line. It is, therefore, necessary to develop an automated design program which can design automatically the PSC sleepers in turnout region. In this study, a computer program for automatic design of turnout sleepers was developed based on graphic user-interface(GUI) environment. The structural analysis is performed considering the varying loading position of vehicular wheels. The sleepers are treated as located on elastic supports. The user can choose the desirable shape of sleepers before starting the detail design. The present study allows more realistic and automatic design of PSC sleepers in high-speed railway turnouts.

  • PDF

An Automated Design Technique of Box Culverts for the Railroad (철도암거 자동화 설계)

  • 김진구;이종민;조선규
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.660-665
    • /
    • 2002
  • A concrete box culvert has been widely used as a typical structure in case of crossing the railroad and highway. Due to the simplicity of it's own shape, in company with the development of computers many studies on the computer-aided automatic design have been continuously carried out. In this paper, an automated design algorithm has been proposed by the analysis of the existed design data of box culverts. From a viewpoint of the users, a data base system has been constructed to carry out the total design process completely through the minimum input data and by means of direct input method on the monitor screen. And an automatic design program for railroad box culverts, in which one-stop process from the structural calculation to the quantity estimation is possible, has been developed.

  • PDF