• 제목/요약/키워드: Automated management system

검색결과 640건 처리시간 0.03초

하천정비기본계획 CAD 형식 단면 측량자료 자동 추출 및 하천공간 데이터베이스 업로딩과 HEC-RAS 지원을 위한 RAUT 툴 개발 (RAUT: An end-to-end tool for automated parsing and uploading river cross-sectional survey in AutoCAD format to river information system for supporting HEC-RAS operation)

  • 김경동;김동수;유호준
    • 한국수자원학회논문집
    • /
    • 제54권12호
    • /
    • pp.1339-1348
    • /
    • 2021
  • 하천법에 의거하여 국내 하천들에는 상당한 국가예산으로 하천정비기본계획이 5-10년 주기로 수립되고 있으며, 홍수위 계산을 위한 HEC-RAS 모의에 필요한 하천단면 등 다양한 하천측량이 실시되고 있다. 그러나, 하천측량자료들은 하천관리지리정보시스템(RIMGIS)에 pdf 보고서 형태로만 제공되고, 원자료는 CAD 형식으로 하천정비계획을 수행한 설계사 등이 분산 소유하고 있어 관리 부재로 망실의 우려도 있어, 다른 용도로의 활용성이 상당히 저하되어 있는 실정이다. 그리고, 측량된 CAD 형식의 단면자료 등을 HEC-RAS에 활용할 때, 'Dream'과 같은 툴을 활용하나 거의 수작업에 가까운 시간과 비용이 소요되는 현실에 있다. 본 연구에서는 이러한 문제들을 해결할 수 있는 툴인 RAUT(River information Auto Upload Tool)를 개발하였다. RAUT 툴은 첫째, 실무에서 하천기본계획 수립 시 활용되는 HEC-RAS 1차원 모형의 입력자료를 CAD 측량자료를 직접 수기로 입력 및 모의를 실시하는 복잡한 단계를 자동화시키고자 하였다. 둘째, 하천공간정보인 CAD측량 자료를 직접 읽어 표준 데이터 모델 (ArcRiver)기반 하천공간정보 DB에 자동 업로드하여 전국단위의 하천정비계획의 하천측량자료 관리가 가능하게 할 수 있다. 즉, 만약 RIMGIS가 RAUT와 같은 툴을 사용하면 하천단면과 같은 전국단위 하천측량 자료를 체계적으로 관리할 수 있게 된다는 의미이다. 개발한 RAUT는 제주도 한천유역을 대상으로 하천정비기본계획의 하천공간정보 CAD자료를 읽어들여 mySQL기반 공간 DB로 구축하고, 구축된 DB로부터 HEC-RAS 1차원 모의 실시하기 위한 지형자료를 자동으로 생성시키는 과정을 시범적으로 구현하였다.

디지털에서 인텔리전트(D2I)달성을 위한 RPA의 구현 (Implementing RPA for Digital to Intelligent(D2I))

  • 최동진
    • 경영정보학연구
    • /
    • 제21권4호
    • /
    • pp.143-156
    • /
    • 2019
  • 혁신의 유형은 단순화, 정보화, 자동화, 지능화로 분류할 수 있고 지능화는 혁신의 최상위 단계이며 RPA는 지능화의 하나로 볼 수 있다. 인공지능을 가미한 소프트웨어 로봇인 RPA(Robotic Process Automation)는 단순 반복적인 대량의 트랜젝션 처리 작업을 하는 곳에 적합한 지능화 사례이다. 이미 국내의 많은 기업들에서도 현재 운영 중에 있는 RPA는 강한조직 문화의 필요성이 증대되면서 자발적인 리더십, 강한 팀워크와 실행력, 프로답게 일하는 문화가 강조되는 상황에서 자연스럽게 핵심적 업무에 집중하기 위해 필요한 것이 무엇인지를 찾고자 하는 필요성에 따라 자연스럽게 도입이 검토되고 있다. 로봇 프로세스 자동화 또는 RPA는 구조적인 작업을 빠르고 효율적으로 처리하는 것을 목표로 인간 업무를 교체하는 기술이다. RPA는 ERP 시스템이나 생산성 도구와 같은 소프트웨어를 사용하여 사람을 모방한 소프트웨어 로봇을 통해 구현된다. RPA 로봇은 컴퓨터에 설치된 소프트웨어로 작동 원리에 의해 로봇으로 불리다. RPA는 백엔드를 통해 다른 IT 시스템과 통신하는 기존 소프트웨어와 달리 프런트 엔드를 통해 IT 시스템 전체에 통합된다. 실제로 이것은 소프트웨어 로봇이 인간과 똑 같은 방식으로 IT 시스템을 사용하고 정확한 단계를 반복하며 시스템의 API(Application Programming Interface)와 통신하는 대신 컴퓨터 화면의 이벤트에 반응하는 것을 의미한다. 다른 소프트웨어와 의사소통하기 위해 인간을 모방하는 소프트웨어를 설계하는 것은 직관력이 떨어질 수 있지만 이러한 접근 방식에는 여러 가지 이점이 있다. 첫째, 타사 응용 프로그램에 대한 개방성과 상관없이 사람이 사용하는 거의 모든 소프트웨어와 RPA를 통합할 수 있다. 많은 기업의 IT 시스템은 공통적으로 적용되는 API가 많지 않음으로 독점적이며 다른 시스템과의 통신 기능이 크게 제한되나 RPA는 이 문제를 해결한다. 둘째, RPA는 매우 짧은 시간 내에 구현될 수 있다. 엔터프라이즈 소프트웨어 통합과 같은 전통적인 소프트웨어 개발 방식은 상대적으로 많은 시간이 소요되지만 RPA는 2~4주의 상대적으로 짧은 시간에 구현할 수 있다. 셋째, 소프트웨어 로봇을 통해 자동화된 프로세스는 시스템 사용자가 쉽게 수정할 수 있다. 기존 방식은 작동 방식을 크게 수정하기 위해 고급 코딩 기술이 필요한 반면에 RPA는 상대적으로 단순한 논리 문장을 수정하거나 인간이 수행하는 프로세스의 화면 캡처 또는 그래픽 프로세스 차트 수정을 통해 지시받을 수 있다. 이로 인해 RPA는 매우 다양하고 유연하다. 이러한 RPA는 기업에서 추구하는 D2I(Digital to Intelligence)의 좋은 적용 사례이다.

우리나라 기준증발산량 추정을 위한 Hargreaves 공식의 계수 보정 (Calibration of Hargreaves Equation Coefficient for Estimating Reference Evapotranspiration in Korea)

  • 황선아;한경화;장용선;조희래;옥정훈;김동진;김기선;정강호
    • 한국농림기상학회지
    • /
    • 제21권4호
    • /
    • pp.238-249
    • /
    • 2019
  • 기준증발산량은 기온, 풍속, 습도 등 기상요소를 바탕으로 추정하는 방법을 이용하고 있으며, Hargreaves 공식은 기온자료를 이용하여 기준증발산량을 산정할 수 있는 간단한 경험식이라 할 수 있다. 그러나 Hargreaves 공식은 풍속이 3 m s-1 이상인 지역에서는 과소평가 되고, 상대습도가 높은 지역은 과대평가 되는 경향이 있다. 본 연구에서는 Hargreaves 공식을 우리나라에 적용하기 위해 보다 정확한 기준증발산량 추정이 가능하도록 계수 산정 연구를 수행하였다. 우리나라 종관기상관측지점(ASOS, Automated Synoptic Observing System)의 최근 11 년(2008-2018) 동안의 기상자료를 이용하여 Panman-Monteith 공식으로 기준증발산량을 추정하였고, 이 값을 기준으로 하여 각 지점별로 Hargreaves 공식의 계수를 보정하였다. 우리나라 82 개 지점에 대하여 지역별로 보정된 계수는 내륙지역이 50 개 지점이며, 0.00173~0.00232(평균0.00196)로 기본값인 0.0023 과 비슷하거나 낮게 산정되었다. 반면, 해안지역은 32 개 지점이며 지역별로 보정된 계수의 범위는 0.00185~0.00303(평균 0.00234)으로 동해안지역은 기본값과 비슷하거나 높게 산정된 반면, 서해안과 남해안지역은 지역별로 편차가 크게 나타났다. Hargreaves 공식의 계수를 보정하여 기준증발산량을 추정한 결과 RMSE(Root Mean Square Error)는 계수 보정 전 0.634~1.394(평균 0.857)에서 계수 보정 후 0.466~1.328(평균 0.701)로 낮아지고, NSC(Nash-Sutcliffe Coefficient)는 계수 보정 전 -0.159~0.837(평균 0.647)에서 계수 보정 후 -0.053~0.910(평균 0.755)로 높아짐에 따라 기준증발산량의 추정효율이 크게 향상되는 것으로 나타났다. 연구 결과, Hargreaves 공식을 그대로 이용할 경우 Penman-Monteith 공식에 비해 과대 또는 과소 산정될 수 있음을 확인하였으며, 계수를 보정하여 이용할 경우 정확도가 높은 기준증발산량을 추정할 수 있을 것으로 판단된다.

Present status and prospect for development of mushrooms in Korea

  • Jang, Kab-Yeul;Oh, Youn-Lee;Oh, Minji;Im, Ji-Hoon;Lee, Seul-Ki;Kong, Won-Sik
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2018년도 춘계학술대회 및 임시총회
    • /
    • pp.27-27
    • /
    • 2018
  • The production scale of mushroom cultivation in Korea is approximately 600 billion won, which is 1.6% of the Korean gross agricultural output. Annually, ca. 190,000 tons of mushrooms are harvested in Korea. Although the numbers of mushroom farms and cultivators are constantly decreasing, the total mushroom yields are increasing due to the large-scale cultivation facilities and automation. The recent expansion of the well-being trend causes increase in mushroom consumption in Korea: annual per capita consumption of mushroom was 3.9kg ('13) that is a little higher than European's average. Thus the exports of mushrooms, mainly Flammulina velutipes and Pleurotus ostreatus, have been increased since the middle of 2000s. Recently, however, it is slightly reduced. However, Vietnam, Hong Kong, the United States, the Netherlands and continued to export, and the country has increased recently been exported to Australia, Canada, Southeast Asia and so on. Canned foods of Agaricus bisporus was the first exports of the Korean mushroom industry. This business has reached the peak of the sale in 1977-1978. As Korea initiated trade with China in 1980, the international prices of mushrooms were sharply fall that led to shrink the domestic markets. According to the high demand to develop new items to substitute for A. bisporus, oyster mushroom (Pleurotus ostreatus) was received the attention since it seems to suit the taste of Korean consumers. Although log cultivation technique was developed in the early 1970s for oyster mushroom, this method requires a great deal of labor. Thus we developed shelf cultivation technique which is easier to manage and allows the mass production. In this technique, the growing shelf is manly made from fermented rice straw, that is the unique P. ostreatus medium in the world, was used only in South Korea. After then, the use of cotton wastes as an additional material of medium, the productivity. Currently it is developing a standard cultivation techniques and environmental control system that can stably produce mushrooms throughout the year. The increase of oyster mushroom production may activate the domestic market and contribute to the industrial development. In addition, oyster mushroom production technology has a role in forming the basis of the development of bottle cultivation. Developed mushroom cultivation technology using bottles made possible the mass production. In particular, bottle cultivation method using a liquid spawn can be an opportunity to export the F.velutipes and P.eryngii. In addition, the white varieties of F.velutipes were second developed in the world after Japan. We also developed the new A.bisporus cultivar "Sae-ah" that is easy to grown in Korea. To lead the mushroom industry, we will continue to develop the cultivars with an international competitive power and to improve the cultivation techniques. Mushroom research in Korea nowadays focuses on analysis of mushroom genetics in combination with development of new mushroom varieties, mushroom physiology and cultivation. Further studied are environmental factors for cultivation, disease control, development and utilization of mushroom substrate resources, post-harvest management and improvement of marketable traits. Finally, the RDA manages the collection, classification, identification and preservation of mushroom resources. To keep up with the increasing application of biotechnology in agricultural research the genome project of various mushrooms and the draft of the genetic map has just been completed. A broad range of future studies based on this project is anticipated. The mushroom industry in Korea continually grows and its productivity rapidly increases through the development of new mushrooms cultivars and automated plastic bottle cultivation. Consumption of medicinal mushrooms like Ganoderma lucidum and Phellinus linteus is also increasing strongly. Recently, business of edible and medicinal mushrooms was suffering under over-production and problems in distribution. Fortunately, expansion of the mushroom export helped ease the negative effects for the mushroom industry.

  • PDF

WHICH INFORMATION MOVES PRICES: EVIDENCE FROM DAYS WITH DIVIDEND AND EARNINGS ANNOUNCEMENTS AND INSIDER TRADING

  • Kim, Chan-Wung;Lee, Jae-Ha
    • 재무관리논총
    • /
    • 제3권1호
    • /
    • pp.233-265
    • /
    • 1996
  • We examine the impact of public and private information on price movements using the thirty DJIA stocks and twenty-one NASDAQ stocks. We find that the standard deviation of daily returns on information days (dividend announcement, earnings announcement, insider purchase, or insider sale) is much higher than on no-information days. Both public information matters at the NYSE, probably due to masked identification of insiders. Earnings announcement has the greatest impact for both DJIA and NASDAQ stocks, and there is some evidence of positive impact of insider asle on return volatility of NASDAQ stocks. There has been considerable debate, e.g., French and Roll (1986), over whether market volatility is due to public information or private information-the latter gathered through costly search and only revealed through trading. Public information is composed of (1) marketwide public information such as regularly scheduled federal economic announcements (e.g., employment, GNP, leading indicators) and (2) company-specific public information such as dividend and earnings announcements. Policy makers and corporate insiders have a better access to marketwide private information (e.g., a new monetary policy decision made in the Federal Reserve Board meeting) and company-specific private information, respectively, compated to the general public. Ederington and Lee (1993) show that marketwide public information accounts for most of the observed volatility patterns in interest rate and foreign exchange futures markets. Company-specific public information is explored by Patell and Wolfson (1984) and Jennings and Starks (1985). They show that dividend and earnings announcements induce higher than normal volatility in equity prices. Kyle (1985), Admati and Pfleiderer (1988), Barclay, Litzenberger and Warner (1990), Foster and Viswanathan (1990), Back (1992), and Barclay and Warner (1993) show that the private information help by informed traders and revealed through trading influences market volatility. Cornell and Sirri (1992)' and Meulbroek (1992) investigate the actual insider trading activities in a tender offer case and the prosecuted illegal trading cased, respectively. This paper examines the aggregate and individual impact of marketwide information, company-specific public information, and company-specific private information on equity prices. Specifically, we use the thirty common stocks in the Dow Jones Industrial Average (DJIA) and twenty one National Association of Securities Dealers Automated Quotations (NASDAQ) common stocks to examine how their prices react to information. Marketwide information (public and private) is estimated by the movement in the Standard and Poors (S & P) 500 Index price for the DJIA stocks and the movement in the NASDAQ Composite Index price for the NASDAQ stocks. Divedend and earnings announcements are used as a subset of company-specific public information. The trading activity of corporate insiders (major corporate officers, members of the board of directors, and owners of at least 10 percent of any equity class) with an access to private information can be cannot legally trade on private information. Therefore, most insider transactions are not necessarily based on private information. Nevertheless, we hypothesize that market participants observe how insiders trade in order to infer any information that they cannot possess because insiders tend to buy (sell) when they have good (bad) information about their company. For example, Damodaran and Liu (1993) show that insiders of real estate investment trusts buy (sell) after they receive favorable (unfavorable) appraisal news before the information in these appraisals is released to the public. Price discovery in a competitive multiple-dealership market (NASDAQ) would be different from that in a monopolistic specialist system (NYSE). Consequently, we hypothesize that NASDAQ stocks are affected more by private information (or more precisely, insider trading) than the DJIA stocks. In the next section, we describe our choices of the fifty-one stocks and the public and private information set. We also discuss institutional differences between the NYSE and the NASDAQ market. In Section II, we examine the implications of public and private information for the volatility of daily returns of each stock. In Section III, we turn to the question of the relative importance of individual elements of our information set. Further analysis of the five DJIA stocks and the four NASDAQ stocks that are most sensitive to earnings announcements is given in Section IV, and our results are summarized in Section V.

  • PDF

오픈-소스 자료처리 기술개발 소프트웨어(Madagascar)를 이용한 탄성파 현장자료 전산처리 적용성 연구 (A Study on the Field Data Applicability of Seismic Data Processing using Open-source Software (Madagascar))

  • 손우현;김병엽
    • 지구물리와물리탐사
    • /
    • 제21권3호
    • /
    • pp.171-182
    • /
    • 2018
  • 탄성파 처리 기술개발 분야의 오픈-소스 소프트웨어인 Madagascar를 이용하여 신호 대 잡음비가 낮고 속도정보가 불확실한 현장 탄성파 자료에 대해 자료처리를 수행하고, 오픈-소스 소프트웨어의 현장 적용성을 시험하였다. 파이썬(python) 기반의 Madagascar는 방법론적으로는 다차원 자료 분석이 가능하고, 처리 공정의 재현성이 뛰어나 효율적인 자료처리가 가능하다는 장점이 있지만, 다소 복잡한 사용법과 자료 구조 시스템으로 인해 현장 자료에 대한 자료처리 사례는 많지 않다. 본 연구에서는 현장 자료에 대한 Madagascar의 효용성을 확인하기 위해 기본적인 탄성파 자료처리(자료입력, 지형 정보 일치, 진동수-파수 필터, 예측 곱풀기, 속도 분석, 수직 시간차 보정, 겹쌓기, 참반사 보정)를 수행하였다. 테스트를 위해 사용한 현장 자료는 서해 군산분지에서 에어건 음원과 480채널의 스트리머로 취득한 해양 탄성파 탐사자료이며, 각 자료처리 단계마다의 결과를 Landmark사의 상용 소프트웨어인 ProMAX (SeisSpace R5000)을 사용하여 처리한 결과와 비교하였다. 그 결과 데이터 입출력 및 관리, 처리 과정의 재현성 및 자동 속도 분석 측면에서는 Madagascar가 상대적으로 높은 효율성을 보였고, 신호 품질 향상을 위한 전처리 결과는 상용 소프트웨어와 유사함을 확인하였다. 반면에, 심부 지층에 대한 영상화 결과는 상용 소프트웨어로 처리한 결과가 보다 뛰어남을 확인하였다. 이러한 결과는 상용 소프트웨어의 경우 다양한 겹반사 제거 모듈이 적용되었고, 상호 대화식 인터페이스로 인해 보다 정교한 자료처리가 가능하였기 때문이다. 그러나, Madagascar의 경우에도 현재 전 세계에서 많은 연구자들이 다양한 자료처리 알고리듬을 개발하여 지속적으로 공개하고 있기 때문에, 향후 이러한 최신 알고리듬을 적용한다면 상업용 수준의 자료처리가 가능해져 보다 향상된 결과를 도출할 수 있을 것이다.

해상풍력발전단지의 최적 위치 선정을 위한 Grid-cell 평가 시스템 개념 설계 (A Study on the Design of the Grid-Cell Assessment System for the Optimal Location of Offshore Wind Farms)

  • 이보경;조익순;김대해
    • 해양환경안전학회지
    • /
    • 제24권7호
    • /
    • pp.848-857
    • /
    • 2018
  • 최근 국제적으로 풍력, 태양광, 파도, 연료전지 등의 친환경 신재생에너지 개발이 활발하다. 특히, 해상에서의 풍력발전단지 개발은 대형화를 통한 단가 절감, 고품질의 풍력자원 활용, 발전기로 인한 소음 피해 최소화를 위해 해안에서 멀리 떨어진 위치에 대규모 부유식으로 건설되는 추세이다. 풍력발전단지의 개발은 해사안전법에 의한 해상교통안전진단제도에 따른 평가가 필요하다. 풍력발전단지의 평가는 해당 수역의 체계적인 개발, 관리, 활용을 위해 선과 면적 개념을 모두 적용하여 수행되어야 하며, 이를 위한 평가 방법과 기준이 개발되어야 한다. 이 연구에서는 해상풍력발전단지처럼 해양 공간을 평가할 수 있는 해상교통조사방법과 평가에 대한 적절한 기준을 수립하고, 이를 시스템적으로 처리할 수 있는 방안에 대해서 연구하였다. 먼저 해상교통조사를 위해 AIS와 레이더를 이용한 이동식 해상교통데이터 수집장치를 설계하였다. 그리고 선과 면적의 개념을 모두 적용한 해상교통 항적도, 밀집도, 경로 분석을 제안하였다. 해상교통밀집도는 Grid-cell의 크기를 조절하여 단위 cell에 대한 공간적, 시간적 점유율을 구분하고 해상교통 경로 분석은 해상을 통항로 또는 작업 공간으로 사용할 때를 구분하여 선박의 이동 패턴을 평가할 수 있도록 제안하였다. 최종적으로 시스템적인 해상교통데이터의 수집과 평가가 가능한 해상교통안전평가솔루션의 개념설계를 수행하였다. 이는 자동적인 해상교통데이터의 수집 저장 분류를 통해, 데이터 누락이나 오표기와 같은 인적 오류를 최소화하고 해상 공간의 용도에 따라 선과 면적 개념을 반영하여 분석함으로써 신뢰성 있는 해상 공간의 평가가 가능하게 한다.

머신러닝을 활용한 수도권 약수터 수질 예측 모델 개발 (Development of a water quality prediction model for mineral springs in the metropolitan area using machine learning)

  • 임영우;엄지연;곽기영
    • 지능정보연구
    • /
    • 제29권1호
    • /
    • pp.307-325
    • /
    • 2023
  • 코로나19 팬데믹의 장기화로 인해 실내 생활에 지쳐가는 사람들이 우울감, 무기력증 등을 해소하기 위해 근거리의 산과 국립공원을 찾는 빈도가 폭발적으로 증가하였다. 자연으로 나온 수많은 사람들이 오가는 걸음을 멈추고 숨을 돌리며 쉬어가는 장소가 있는데 바로 약수터이다. 산이나 국립공원이 아니더라도 근린공원 또는 산책로에서도 간간이 찾아볼 수 있는 약수터는 수도권에만 약 6백여개가 위치해 있다. 하지만 불규칙적이고 수작업으로 수행되는 수질검사로 인해 사람들은 실시간으로 검사 결과를 알 수 없는 상태에서 약수를 음용하게 된다. 따라서 본 연구에서는 약수터 수질에 영향을 미치는 요인을 탐색하고 다양한 곳에 흩어져 있는 데이터를 수집하여 실시간으로 약수터 수질을 예측할 수 있는 모델을 개발하고자 한다. 데이터 수집의 한계로 인해 서울과 경기로 지역을 한정한 후 데이터 관리가 잘 이루어지고 있는 18개 시의 약 300여개 약수터를 대상으로 2015~2020년의 수질 검사 데이터를 확보하였다. 약수터 수질 적합 여부에 영향을 미칠 것으로 여겨지는 다양한 요인들 중 두 차례의 검토를 거쳐 총 10개의 요인을 최종 선별하였다. 최근 주목받고 있는 자동화 머신러닝 기술인 AutoML 기법을 활용하여 20여가지의 머신러닝 기법들 중 예측 성능 기준 상위 5개의 모델을 도출하였으며 그 중 catboost 모델이 75.26%의 예측 분류 정확도로 가장 높은 성능을 가지고 있음을 확인하였다. 추가로 SHAP 기법을 통해 분석에 사용한 변인들이 예측에 미치는 절대적인 영향력을 살펴본 결과 직전 수질 검사에서 부적합 판정을 받았는지 여부가 가장 중요한 요인이었으며 그 외 평균 기온, 과거 연속 2번 수질 부적합 판정 기록 유무, 수질 검사 당일 기온, 약수터 고도 등이 수질 부적합 여부에 영향을 미치고 있음을 확인하였다.

기계학습을 이용한 수출신용보증 사고예측 (The Prediction of Export Credit Guarantee Accident using Machine Learning)

  • 조재영;주지환;한인구
    • 지능정보연구
    • /
    • 제27권1호
    • /
    • pp.83-102
    • /
    • 2021
  • 2020년 8월 정부는 한국판 뉴딜을 뒷받침하기 위한 공공기관의 역할 강화방안으로서 각 공공기관별 역량을 바탕으로 5대 분야에 걸쳐 총 20가지 과제를 선정하였다. 빅데이터(Big Data), 인공지능 등을 활용하여 대국민 서비스를 제고하고 공공기관이 보유한 양질의 데이터를 개방하는 등의 다양한 정책을 통해 한국판 뉴딜(New Deal)의 성과를 조기에 창출하고 이를 극대화하기 위한 다양한 노력을 기울이고 있다. 그중에서 한국무역보험공사(KSURE)는 정책금융 공공기관으로 국내 수출기업들을 지원하기 위해 여러 제도를 운영하고 있는데 아직까지는 본 기관이 가지고 있는 빅데이터를 적극적으로 활용하지 못하고 있는 실정이다. 본 연구는 한국무역보험공사의 수출신용보증 사고 발생을 사전에 예측하고자 공사가 보유한 내부 데이터에 기계학습 모형을 적용하였고 해당 모형 간에 예측성과를 비교하였다. 예측 모형으로는 로지스틱(Logit) 회귀모형, 랜덤 포레스트(Random Forest), XGBoost, LightGBM, 심층신경망을 사용하였고, 평가 기준으로는 전체 표본의 예측 정확도 이외에도 표본별 사고 확률을 구간으로 나누어 높은 확률로 예측된 표본과 낮은 확률로 예측된 경우의 정확도를 서로 비교하였다. 각 모형별 전체 표본의 예측 정확도는 70% 내외로 나타났고 개별 표본을 사고 확률 구간별로 세부 분석한 결과 양 극단의 확률구간(0~20%, 80~100%)에서 90~100%의 예측 정확도를 보여 모형의 현실적 활용 가능성을 보여주었다. 제2종 오류의 중요성 및 전체적 예측 정확도를 종합적으로 고려할 경우, XGBoost와 심층신경망이 가장 우수한 모형으로 평가되었다. 랜덤포레스트와 LightGBM은 그 다음으로 우수하며, 로지스틱 회귀모형은 가장 낮은 성과를 보였다. 본 연구는 한국무역보험공사의 빅데이터를 기계학습모형으로 분석해 업무의 효율성을 높이는 사례로서 향후 기계학습 등을 활용하여 실무 현장에서 빅데이터 분석 및 활용이 활발해지기를 기대한다.

XGBoost를 활용한 리스크패리티 자산배분 모형에 관한 연구 (A Study on Risk Parity Asset Allocation Model with XGBoos)

  • 김영훈;최흥식;김선웅
    • 지능정보연구
    • /
    • 제26권1호
    • /
    • pp.135-149
    • /
    • 2020
  • 인공지능을 기반으로 한 다양한 연구들이 현대사회에 많은 변화를 불러일으키고 있다. 금융시장 역시 예외는 아니다. 로보어드바이저 개발이 활발하게 진행되고 있으며 전통적 방식의 단점을 보완하고 사람이 분석하기 어려운 부분을 대체하고 있다. 로보어드바이저는 인공지능 알고리즘으로 자동화된 투자 결정을 내려 다양한 자산배분 모형과 함께 활용되고 있다. 자산배분 모형 중 리스크패리티는 대표적인 위험 기반 자산배분 모형의 하나로 큰 자산을 운용하는 데 있어 안정성을 나타내고 현업에서 역시 널리 쓰이고 있다. 그리고 XGBoost 모형은 병렬화된 트리 부스팅 기법으로 제한된 메모리 환경에서도 수십억 가지의 예제로 확장이 가능할 뿐만 아니라 기존의 부스팅에 비해 학습속도가 매우 빨라 많은 분야에서 널리 활용되고 있다. 이에 본 연구에서 리스크패리티와 XGBoost를 장점을 결합한 모형을 제안하고자 한다. 기존에 널리 사용되는 최적화 자산배분 모형은 과거 데이터를 기반으로 투자 비중을 추정하기 때문에 과거와 실투자 기간 사이의 추정 오차가 발생하게 된다. 최적화 자산배분 모형은 추정 오차로 인해 포트폴리오 성과에서 악영향을 받게 된다. 본 연구는 XGBoost를 통해 실투자 기간의 변동성을 예측하여 최적화 자산배분 모형의 추정 오차를 줄여 모형의 안정성과 포트폴리오 성과를 개선하고자 한다. 본 연구에서 제시한 모형의 실증 검증을 위해 한국 주식시장의 10개 업종 지수 데이터를 활용하여 2003년부터 2019년까지 총 17년간 주가 자료를 활용하였으며 in-sample 1,000개, out-of-sample 20개씩 Moving-window 방식으로 예측 결과값을 누적하여 총 154회의 리밸런싱이 이루어진 백테스팅 결과를 도출하였다. 본 연구에서 제안한 자산배분 모형은 기계학습을 사용하지 않은 기존의 리스크패리티와 비교하였을 때 누적수익률 및 추정 오차에서 모두 개선된 성과를 보여주었다. 총 누적수익률은 45.748%로 리스크패리티 대비 약 5% 높은 결과를 보였고 추정오차 역시 10개 업종 중 9개에서 감소한 결과를 보였다. 실험 결과를 통해 최적화 자산배분 모형의 추정 오차를 감소시킴으로써 포트폴리오 성과를 개선하였다. 포트폴리오의 추정 오차를 줄이기 위해 모수 추정 방법에 관한 다양한 연구 사례들이 존재한다. 본 연구는 추정 오차를 줄이기 위한 새로운 추정방법으로 기계학습을 제시하여 최근 빠른 속도로 발전하는 금융시장에 맞는 진보된 인공지능형 자산배분 모형을 제시한 점에서 의의가 있다.