• Title/Summary/Keyword: Automated detection

Search Result 600, Processing Time 0.029 seconds

Application of Multiple Threshold Values for Accuracy Improvement of an Automated Binary Change Detection Model

  • Yu, Byeong-Hyeok;Chi, Kwang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.3
    • /
    • pp.271-285
    • /
    • 2009
  • Multi-temporal satellite imagery can be changed into a transform image that emphasizes the changed area only through the application of various change detection techniques. From the transform image, an automated change detection model calculates the optimal threshold value for classifying the changed and unchanged areas. However, the model can cause undesirable results when the histogram of the transform image is unbalanced. This is because the model uses a single threshold value in which the sign is either positive or negative and its value is constant (e.g. -1, 1), regardless of the imbalance between changed pixels. This paper proposes an advanced method that can improve accuracy by applying separate threshold values according to the increased or decreased range of the changed pixels. It applies multiple threshold values based on the cumulative producer's and user's accuracies in the automated binary change detection model, and the analyst can automatically extract more accurate optimal threshold values. Multi-temporal IKONOS satellite imagery for the Daejeon area was used to test the proposed method. A total of 16 transformation results were applied to the two study sites, and optimal threshold values were determined using accuracy assessment curves. The experiment showed that the accuracy of most transform images is improved by applying multiple threshold values. The proposed method is expected to be used in various study fields, such as detection of illegal urban building, detection of the damaged area in a disaster, etc.

Development of Core Technology for Object Detection in Excavation Work Using Laser Sensor (레이저 센서를 이용한 굴삭기 작업의 장애물 탐지 요소기술 개발)

  • Soh, Ji-Yune;Kim, Min-Woong;Lee, Jun-Bok;Han, Choong-Hee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.4
    • /
    • pp.71-77
    • /
    • 2008
  • Earthwork is very equipment-intensive task and researches related to automated excavation have been conducted. There is an issue to secure the safety for an automated excavating system. Therefore, this paper focuses on how to improve safety for semi- or fully-automated backhoe excavation. The primary objective of this research is to develop the core technology for automated object detection in excavation work. In order to satisfy the research objective, a diverse sensing technologies are investigated and analysed in terms of functions, durability, and reliability. The authors developed detecting algorithm for the objects using laser sensor and verified its performance by several tests. The results of this study would be the basis for developing the automated object detection system.

Urban Environment change detection through landscape indices derived from Landsat TM data

  • Iisaka, Joji
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.696-701
    • /
    • 2002
  • This paper describes some results of change detection in Tokyo metropolitan area, Japan , using the Landsat TM data, and methods to quantify the ground cover classes. The changes are analyzed using the measures of not only conventional spectral classes but also a set of landscape indices to describe spatial properties of ground cove types using fractal dimension of objects, entropy in the specific windows defining the neighbors of focusing locations. In order eliminate the seasonal radiometric effects on TM data, an automated class labeling method is also attempted. Urban areas are also delineated automatically by defining the boundaries of the urban area. These procedures for urban change detection were implemented by the unified image computing methods proposed by the author, they can be automated in coherent and systematic ways, and it is anticipated to automate the whole procedures. The results of this analysis suggest that Tokyo metropolitan area was extended to the suburban areas along the new transportation networks and the high density area of Tokyo were also very much extended during the period between 1985 and 1995.

  • PDF

Automated Mismatch Detection based on Matching and Robust Estimation for Automated Image Navigation

  • Lee Tae-Yoon;Kim Taejung;Choi Rae-Jin
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.709-712
    • /
    • 2005
  • Ground processing for geostationary weather satellite such as GOES, MTSAT includes the process called image navigation. Image navigation means the retrieval of satellite navigational parameters from images and requires landmark detection by matching satellite images against landmark chips. For an automated preprocessing, a matching must be performed automatically. However, if match results contain errors, the accuracy of image navigation deteriorates. To overcome this problem, we propose the use of a robust estimation technique, called Random Sample Consensus (RANSAC), to automatically detect mismatches. We tested GOES-9 satellite images with 30 landmark chips. Landmark chips were extracted from the world shoreline database. To them, matching was applied and mismatch results were detected automatically by RANSAC. Results showed that all mismatches were detected correctly by RANSAC with a threshold value of 2.5 pixels.

  • PDF

Radar, Vision, Lidar Fusion-based Environment Sensor Fault Detection Algorithm for Automated Vehicles (레이더, 비전, 라이더 융합 기반 자율주행 환경 인지 센서 고장 진단)

  • Choi, Seungrhi;Jeong, Yonghwan;Lee, Myungsu;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.9 no.4
    • /
    • pp.32-37
    • /
    • 2017
  • For automated vehicles, the integrity and fault tolerance of environment perception sensor have been an important issue. This paper presents radar, vision, lidar(laser radar) fusion-based fault detection algorithm for autonomous vehicles. In this paper, characteristics of each sensor are shown. And the error of states of moving targets estimated by each sensor is analyzed to present the method to detect fault of environment sensors by characteristic of this error. Each estimation of moving targets isperformed by EKF/IMM method. To guarantee the reliability of fault detection algorithm of environment sensor, various driving data in several types of road is analyzed.

Variable Selection and Outlier Detection for Automated K-means Clustering

  • Kim, Sung-Soo
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.1
    • /
    • pp.55-67
    • /
    • 2015
  • An important problem in cluster analysis is the selection of variables that define cluster structure that also eliminate noisy variables that mask cluster structure; in addition, outlier detection is a fundamental task for cluster analysis. Here we provide an automated K-means clustering process combined with variable selection and outlier identification. The Automated K-means clustering procedure consists of three processes: (i) automatically calculating the cluster number and initial cluster center whenever a new variable is added, (ii) identifying outliers for each cluster depending on used variables, (iii) selecting variables defining cluster structure in a forward manner. To select variables, we applied VS-KM (variable-selection heuristic for K-means clustering) procedure (Brusco and Cradit, 2001). To identify outliers, we used a hybrid approach combining a clustering based approach and distance based approach. Simulation results indicate that the proposed automated K-means clustering procedure is effective to select variables and identify outliers. The implemented R program can be obtained at http://www.knou.ac.kr/~sskim/SVOKmeans.r.

Automated Detection Technique for Suspected Copyright Infringement Sites

  • Jeong, Hae Seon;Kwak, Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.12
    • /
    • pp.4889-4908
    • /
    • 2020
  • With the advances in Information Technology (IT), users can download or stream copyrighted works, such as videos, music, and webtoons, at their convenience. Thus, the frequency of use of copyrighted works has increased. Consequently, the number of unauthorized copies and sharing of copyrighted works has also increased. Monitoring is being conducted on sites suspected of conducting copyright infringement activities to reduce copyright holders' damage due to unauthorized sharing of copyrighted works. However, suspected copyright infringement sites respond by changing their domains or blocking access requests. Although research has been conducted for improving the effectiveness of suspected copyright infringement site detection by defining suspected copyright infringement sites' response techniques as a lifecycle step, there is a paucity of studies on automation techniques for lifecycle detection. This has reduced the accuracy of lifecycle step detection on suspected copyright infringement sites, which change domains and lifecycle steps in a short period of time. Thus, in this paper, an automated detection technique for suspected copyright infringement sites is proposed for efficient detection and response to suspected copyright infringement sites. Using our proposed technique, the response to each lifecycle step can be effectively conducted by automatically detecting the lifecycle step.

Automated detection of eeg spindle waveforms based on its local spectrum

  • Chang, Tae-G.;Shim, Shin-H.;Yang, Won-Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.257-260
    • /
    • 1993
  • A new method of spindle waveform detection is presented for the automated analysis of sleep EEG. The method is based on the combined application of signal conditioning in the time-domain and local spectrum analyzing in the frequency-domain. The overall detection system is implemented and, tested in real-time with a total of 24 hour data obtained from four subjects. The result shows an average agreement of 86.7% with the visually inspected result.

  • PDF

Obstacle Detection System For Automated Container Terminal (자동화 항만용 장애물 감지 시스템)

  • 박경택;박찬훈;강병수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.487-490
    • /
    • 2002
  • AGV is very useful equipment to transfer containers in automated container terminal. AGV must have Obstacle Detection System (ODS) fur port automation. ODS needs the function to classify some specified object from background in acquired data. And it must be able to track classified moving objects. Finally, ODS could determine its next action for safe deriving whether it should do emergency stop or speed down, or it should change its deriving lane. For these functions, ODS can have many different kinds of algorithm. In this paper, we present one of them under developing.

  • PDF

Fault Detection and Diagnosis of Automated Manufacturing Systems Using Petri Nets (패트리 네트를 이용한 자동화 제조 시스템의 오류 감지 및 진단에 관한 연구)

  • Lee, J.B.;Lim, J.
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.314-316
    • /
    • 1993
  • In this paper, a method to detect and diagnose faults in Automated Manufacturing Systems(AMS) is proposed. In AMS, it is necessary to monitor the process-status. The detection and diagnosis of faults are often difficult in monitoring level with given passive data. We propose the model-based monitoring system for faults detection and diagnosis using Petri Nets to model AMS efficiently and easily. Simulation results show the validity of proposed method with example of Reverse Mill Process in Automated Mill Lines.

  • PDF