• 제목/요약/키워드: Automated Machine Learning (AutoML)

검색결과 23건 처리시간 0.025초

Modeling of AutoML using Colored Petri Net

  • Yo-Seob, Lee
    • International Journal of Advanced Culture Technology
    • /
    • 제10권4호
    • /
    • pp.420-426
    • /
    • 2022
  • Developing a machine learning model and putting it into production goes through a number of steps. Automated Machine Learning(AutoML) appeared to increase productivity and efficiency by automating inefficient tasks that occur while repeating this process whenever machine learning is applied. The high degree of automation of AutoML models allows non-experts to use machine learning models and techniques without the need to become machine learning experts. Automating the process of applying machine learning end-to-end with AutoML models has the added benefit of creating simpler solutions, generating these solutions faster, and often generating models that outperform hand-designed models. In this paper, the AutoML data is collected and AutoML's Color Petri net model is created and analyzed based on it.

북극 해빙표면온도 산출을 위한 Automated Machine Learning과 Deep Neural Network의 적용성 평가 (Applicability Evaluation of Automated Machine Learning and Deep Neural Networks for Arctic Sea Ice Surface Temperature Estimation)

  • 박성우;성노훈;심수영;정대성;우종호;김나연;김홍희;한경수
    • 대한원격탐사학회지
    • /
    • 제39권6_1호
    • /
    • pp.1491-1495
    • /
    • 2023
  • 본 연구는 북극의 해빙표면온도(ice surface temperature, IST)를 자동화된 기계 학습(automated machine learning, AutoML) 기반으로 산출하였다. AutoML 기반 IST는 상관관계(correlation coefficient, R) 0.97, 평균 제곱근 오차(root mean squared error, RMSE) 2.51K로 산출되었다. 심층신경망(deep neural network, DNN) 모델과 비교하여 AutoML IST는 Moderate Resolution Imaging Spectroradiometer (MODIS) IST 및 ice mass balance (IMB) buoy IST와의 검증 결과에서 좋은 정확도를 보인다. 이는 어려운 극지방 조건에서 IST 추정 정확도를 향상시키는 AutoML의 효과를 강조한다.

Comparing automated and non-automated machine learning for autism spectrum disorders classification using facial images

  • Elshoky, Basma Ramdan Gamal;Younis, Eman M.G.;Ali, Abdelmgeid Amin;Ibrahim, Osman Ali Sadek
    • ETRI Journal
    • /
    • 제44권4호
    • /
    • pp.613-623
    • /
    • 2022
  • Autism spectrum disorder (ASD) is a developmental disorder associated with cognitive and neurobehavioral disorders. It affects the person's behavior and performance. Autism affects verbal and non-verbal communication in social interactions. Early screening and diagnosis of ASD are essential and helpful for early educational planning and treatment, the provision of family support, and for providing appropriate medical support for the child on time. Thus, developing automated methods for diagnosing ASD is becoming an essential need. Herein, we investigate using various machine learning methods to build predictive models for diagnosing ASD in children using facial images. To achieve this, we used an autistic children dataset containing 2936 facial images of children with autism and typical children. In application, we used classical machine learning methods, such as support vector machine and random forest. In addition to using deep-learning methods, we used a state-of-the-art method, that is, automated machine learning (AutoML). We compared the results obtained from the existing techniques. Consequently, we obtained that AutoML achieved the highest performance of approximately 96% accuracy via the Hyperpot and tree-based pipeline optimization tool optimization. Furthermore, AutoML methods enabled us to easily find the best parameter settings without any human efforts for feature engineering.

한국 영화의 산업의 흥행 극대화를 위한 AutoML 기반의 박스오피스 유형 분류 및 예측 모델 (A Box Office Type Classification and Prediction Model Based on Automated Machine Learning for Maximizing the Commercial Success of the Korean Film Industry)

  • 임수빈;문지훈;노승민
    • Journal of Platform Technology
    • /
    • 제11권3호
    • /
    • pp.45-55
    • /
    • 2023
  • 본 논문은 한국 영화 산업의 의사 결정자들이 온라인상에서의 영화의 흥행을 극대화할 수 있도록 지원하는 데 도움을 주고자 역대 박스오피스 영화를 수집하여 영화를 유형별로 군집화하고, 유형별 온라인 박스오피스를 예측하는 모델을 제시한다. 이를 위해 먼저 다양한 특성을 고려하여 영화의 흥행 요인을 식별하고, 계산 효율성을 고려하여 특성 차원을 줄인다. 다음으로 영화의 유형을 체계적으로 분류하고, 유형별 온라인 박스오피스를 예측하며 흥행에 이바지한 요소를 분석한다. 이때, AutoML (Automated Machine Learning) 기법을 활용함으로써 다양한 기계학습 알고리즘을 자동으로 구성하고, 문제에 최적화된 알고리즘을 선택함으로써 여러 알고리즘을 쉽게 시도 및 선택한다. 이를 통해 정보화된 판단을 내릴 수 있는 기반을 제공하고, 영화 산업의 더 나은 성과를 도모하는 데 이바지할 것으로 기대할 수 있다.

  • PDF

Azure 클라우드 플랫폼의 가상서버 호스팅을 이용한 데이터 수집환경 및 분석에 관한 연구 (A study on data collection environment and analysis using virtual server hosting of Azure cloud platform)

  • 이재규;조인표;이상엽
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2020년도 제62차 하계학술대회논문집 28권2호
    • /
    • pp.329-330
    • /
    • 2020
  • 본 논문에서는 Azure 클라우드 플랫폼의 가상서버 호스팅을 이용해 데이터 수집 환경을 구축하고, Azure에서 제공하는 자동화된 기계학습(Automated Machine Learning, AutoML)을 기반으로 데이터 분석 방법에 관한 연구를 수행했다. 가상 서버 호스팅 환경에 LAMP(Linux, Apache, MySQL, PHP)를 설치하여 데이터 수집환경을 구축했으며, 수집된 데이터를 Azure AutoML에 적용하여 자동화된 기계학습을 수행했다. Azure AutoML은 소모적이고 반복적인 기계학습 모델 개발을 자동화하는 프로세스로써 기계학습 솔루션 구현하는데 시간과 자원(Resource)를 절약할 수 있다. 특히, AutoML은 수집된 데이터를 분류와 회귀 및 예측하는데 있어서 학습점수(Training Score)를 기반으로 보유한 데이터에 가장 적합한 기계학습 모델의 순위를 제공한다. 이는 데이터 분석에 필요한 기계학습 모델을 개발하는데 있어서 개발 초기 단계부터 코드를 설계하지 않아도 되며, 전체 기계학습 시스템을 개발 및 구현하기 전에 모델의 구성과 시스템을 설계해볼 수 있기 때문에 매우 효율적으로 활용될 수 있다. 본 논문에서는 NPU(Neural Processing Unit) 학습에 필요한 데이터 수집 환경에 관한 연구를 수행했으며, Azure AutoML을 기반으로 데이터 분류와 회귀 등 가장 효율적인 알고리즘 선정에 관한 연구를 수행했다.

  • PDF

Analysis of Automatic Machine Learning Solution Trends of Startups

  • Lee, Yo-Seob
    • International Journal of Advanced Culture Technology
    • /
    • 제8권2호
    • /
    • pp.297-304
    • /
    • 2020
  • Recently, open source automatic machine learning solutions have been applied in many fields. To apply open source automated machine learning to real world problems, you need to write code with expertise in machine learning. Writing code without machine learning knowledge is challenging. To solve this problem, the automatic machine learning solutions provided by startups are made easy to use with a clean user interface. In this paper, we review automatic machine learning solutions of startups.

텍스트 분류 자동화를 위한 AutoML 웹 플랫폼 개발 (Development of an AutoML Web Platform for Text Classification Automation)

  • 송하윤;강전성;박범준;김준영;전광우;윤준원;정현준
    • 정보처리학회 논문지
    • /
    • 제13권10호
    • /
    • pp.537-544
    • /
    • 2024
  • 인공지능과 머신러닝 기술의 급격한 발전은 다양한 산업 분야에 혁신을 일으키고 있으며, 특히 자연어 처리(NLP) 기술은 텍스트 데이터 분석 및 처리에 새로운 가능성을 제공하고 있다. 텍스트 분류 모델을 효과적으로 개발하려면 데이터 탐색, 전처리, 특징 추출, 모델 선택, 하이퍼파라미터 튜닝, 성능 평가 등의 복잡한 단계를 거쳐야 하며, 이는 많은 시간과 전문 지식을 요구한다. 자동화된 머신러닝(AutoML)은 이러한 과정을 자동화하여 비전문가도 고성능 모델을 쉽게 생성할 수 있도록 돕는다. 그러나 기존 AutoML 도구는 주로 정형 데이터에 특화되어 있어, 비정형 텍스트 데이터 처리에는 전처리와 특징 추출 과정에서 수작업이 필요하다. 본 연구에서는 이러한 한계를 해결하기 위해 텍스트 전처리, 단어 임베딩, 모델 학습 및 평가 과정을 자동화하는 웹 기반 AutoML 플랫폼을 개발하였다. 이 플랫폼은 사용자가 텍스트 데이터를 업로드하면 최적의 머신러닝 모델을 자동으로 생성하고 성능을 시각적으로 제공함으로써 텍스트 분류 작업의 효율성을 크게 향상시킨다. 다양한 텍스트 분류 데이터셋을 활용한 실험 결과, 제안된 플랫폼은 높은 정확도와 정밀도를 보였으며, 특히 Stacked Ensemble 모델 사용 시 우수한 성능을 나타냈다. 본 연구는 텍스트 분류 자동화를 통해 비전문가도 손쉽게 텍스트 데이터를 분석하고 활용할 수 있는 가능성을 제시하며, 향후 대규모 언어 모델(LLM)을 적용하여 성능을 더욱 향상시킬 계획이다.

자동 기계학습(AutoML) 기술 동향 (Recent Research & Development Trends in Automated Machine Learning)

  • 문용혁;신익희;이용주;민옥기
    • 전자통신동향분석
    • /
    • 제34권4호
    • /
    • pp.32-42
    • /
    • 2019
  • The performance of machine learning algorithms significantly depends on how a configuration of hyperparameters is identified and how a neural network architecture is designed. However, this requires expert knowledge of relevant task domains and a prohibitive computation time. To optimize these two processes using minimal effort, many studies have investigated automated machine learning in recent years. This paper reviews the conventional random, grid, and Bayesian methods for hyperparameter optimization (HPO) and addresses its recent approaches, which speeds up the identification of the best set of hyperparameters. We further investigate existing neural architecture search (NAS) techniques based on evolutionary algorithms, reinforcement learning, and gradient derivatives and analyze their theoretical characteristics and performance results. Moreover, future research directions and challenges in HPO and NAS are described.

Cognitive Impairment Prediction Model Using AutoML and Lifelog

  • Hyunchul Choi;Chiho Yoon;Sae Bom Lee
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권11호
    • /
    • pp.53-63
    • /
    • 2023
  • 본 연구는 고령층의 치매 예방을 위한 선별검사 수단으로 자동화된 기계학습(AutoML)을 활용하여 인지기능 장애 예측모형을 개발하였다. 연구 데이터는 한국지능정보사회진흥원의 '치매 고위험군 웨어러블 라이프로그 데이터'를 활용하였다. 분석은 구글 코랩 환경에서 PyCaret 3.0.0이 사용하여 우수한 분류성능을 보여주는 5개의 모형을 선정하고 앙상블 학습을 진행하여 모형을 통합한 뒤, 최종 성능평가를 진행하였다. 연구결과, Voting Classifier, Gradient Boosting Classifier, Extreme Gradient Boosting, Light Gradient Boosting Machine, Extra Trees Classifier, Random Forest Classifier 모형 순으로 높은 예측성능을 보이는 것으로 나타났다. 특히 '수면 중 분당 평균 호흡수'와 '수면 중 분당 평균 심박수'가 가장 중요한 특성변수(feature)로 확인되었다. 본 연구의 결과는 고령층의 인지기능 장애를 보다 효과적으로 관리하고 예방하기 위한 수단으로 기계학습과 라이프로그의 활용 가능성에 대한 고려를 시사한다.

Sentinel-1 SAR 영상과 AI 기법을 이용한 국내 중소규모 농업저수지의 수표면적 산출 (An Artificial Intelligence Approach to Waterbody Detection of the Agricultural Reservoirs in South Korea Using Sentinel-1 SAR Images)

  • 최소연;윤유정;강종구;박강현;김근아;이슬찬;최민하;정하규;이양원
    • 대한원격탐사학회지
    • /
    • 제38권5_3호
    • /
    • pp.925-938
    • /
    • 2022
  • 농업용 저수지는 전국적으로 중요한 수자원으로 기후변화에 따른 가뭄과 같은 이상기후의 영향에 취약한 특성을 가지며 적절한 운영을 위해 강화된 관리가 필요하다. 지속적인 모니터링을 통한 수위 추적(water level tracking)이 필요하지만 현실적인 문제로 현장 실측 및 관측이 어려운 실정이다. 본 연구는 저수지 수표면적을 측정하기 위해 광역 모니터링이 가능한 위성레이더 자료를 이용하여 4가지 AI 모델 간의 수체 탐지 성능에 대해 객관적인 비교를 제시한다. 위성 레이더자료는 Sentinel-1 SAR 이미지를 사용하였으며, 광학영상과 달리 기상환경에 영향을 적게 받기 때문에 장기 모니터링에 적합하다. 드론 이미지, Sentinel-1 SAR 그리고 DSM 데이터를 사용하여 Support Vector Machine (SVM), Random Forest (RF), Artificial Neural Network (ANN), Automated Machine Learning (AutoML)의 4가지 AI 모델을 구축했다. 연구대상 저수지는 총 22개소로 유효저수량이 30만톤 미만의 중소형 저수지이다. 총 45개 이미지가 모델 훈련과 검증에 사용되었으며, 연구 결과 AutoML 모델이 Accuracy=0.92, mIoU=0.81로 다른 3가지 모델에 비해 수체 픽셀 분류에서 0.01-0.03 더 나은 것을 보여주었다. 해당 결과는 SAR 영상으로부터 AutoML을 이용한 중소형 저수지 대상의 수체 분류 기법이 기존의 머신러닝 기법만큼의 성능을 보이는 것을 보여주었고, 학습을 통한 수표면적 분류 기술의 저수지 모니터링에 대한 적용 가능성을 보여주었다.