• Title/Summary/Keyword: Automated Estimation

Search Result 224, Processing Time 0.022 seconds

Estimating the Monthly Precipitation Distribution of North Korea Using the PRISM Model and Enhanced Detailed Terrain Information (PRISM과 개선된 상세 지형정보를 이용한 월별 북한지역 강수량 분포 추정)

  • Kim, Dae-jun;Kim, Jin-Hee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.366-372
    • /
    • 2019
  • The PRISM model has been used to estimate precipitation in South Korea where observation data are readily available at a large number of weather station. However, it is likely that the PRISM model would result in relatively low reliability of precipitation estimates in North Korea where weather data are available at a relatively small number of weather stations. Alternatively, a hybrid method has been developed to estimate the precipitation distribution in area where availability of climate data is relatively low. In the hybrid method, Regression coefficients between the precipitation-terrain relationships are applied to a low-resolution precipitation map produced using the PRISM. In the present study, a hybrid approach was applied to North Korea for estimation of precipitation distribution at a high spatial resolution. At first, the precipitation distribution map was produced at a low-resolution (2,430m) using the PRISM model. Secondly, a deviation map was prepared calculating difference between altitudes of synoptic stations and virtual terrains produced using 270m-resolution digital elevation map (DEM). Lastly, another deviation map of precipitation was obtained from the maps of virtual precipitation produced using observation data from the synoptic weather stations and both synoptic and automated weather station (AWS), respectively. The regression equation between precipitation and terrain was determined using these deviation maps. The high resolution map of precipitation distribution was obtained applying the regression equation to the low-resolution map. It was found that the hybrid approach resulted in better representation of the effects of the terrain. The precipitation distribution map for the hybrid approach had similar spatial pattern to that for the existing method. It was estimated that the mean annual cumulative precipitation of entire territory of North Korea was 1,195mm with a standard deviation of 253mm.

Hypoxia and Characteristics of Nutrient Distribution at the Bottom Water of Cheonsu Bay Due to the Discharge of Eutrophicated Artificial Lake Water (간척지 내 부영양화된 호수 수괴의 간헐적 유출로 인한 천수만 저층수의 Hypoxia 발생과 영양염 분포 특성)

  • Lee, Dong-Kwan;Kim, Ki-Hyun;Lee, Jae-Sung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.7
    • /
    • pp.854-862
    • /
    • 2016
  • In summer 2010, we measured the concentration of dissolved oxygen (DO) and nutrients in the water collected at the bottom of Cheonsu Bay, off the west coast of Korea. We also measured nutrient fluxes across the sediment-water interface by deploying a fully-automated benthic lander, which collected time-series water samples inside a benthic chamber. We confirmed on-going hypoxia in the northern parts of the bay where polluted lake water was discharged. DO content in the water at the bottom was 2 mg/l, compared to 5 mg/l at the mouth of the bay in the south. Nutrient concentrations showed a trend that was opposite to that of DO. The variation of N/P ratios implies phosphate desorption and a release of nutrients caused by hypoxia. The organic carbon oxidation rate and oxygen consumption rate in the northern parts of the bay were about twice as fast as those at the mouth of the bay. Benthic fluxes of nutrients in the northern part of the bay were 4 to 6 times higher than those at the mouth. Our results imply that it is important to understand the role of hypoxia events to make an accurate estimation of material fluxes across the sediment-water interface.

Estimation on Unsaturated Characteristic Curves of Tailings obtained from Waste Dump of Imgi Mine in Busan (부산 임기광산 폐석적치장 광미의 불포화 특성곡선 산정)

  • Song, Young-Suk;Kim, Kyeong-Su;Jeong, Sueng-Won;Lee, Choon-Oh
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.3
    • /
    • pp.47-58
    • /
    • 2014
  • To investigate the unsaturated characteristics of the tailings obtained from the waste dump at Imgi mine, matric suction and volumetric water content were measured in both drying and wetting processes using Automated Soil-Water Characteristics Curve Apparatus. Based on the measured result, Soil Water Characteristic Curves (SWCC) were estimated by van Genuchten model. According to the unsaturated soil classification method, the tailings of the waste dump correspond to clayey sand. As a result of Suction Stress Characteristic Curve (SSCC) by Lu and Likos model, SSCC has a shape of S which is similar to SWCC. The hysteresis phenomenon occurred in SSCCs, which means the suction stress of drying path is larger than that of wetting path in the same effective degree of saturation. The effective stress of unsaturated soil is equal to that of saturated soil when matric suction is less than Air Entry Value (AEV). However, the effective stress of unsaturated soil is larger than that of saturated soil when matic suction is more than AEV. Meanwhile, unsaturated hydraulic conductivity by van Genuchten model decreased with increasing matric suction, and the hydraulic conductivity of drying path is larger than that of wetting path.

Development of an Open Source-based Spatial Analysis Tool for Storm and Flood Damage (풍수해 대비 오픈소스 기반 공간분석 도구 개발)

  • Kim, Minjun;Lee, Changgyu;Hwang, Suyeon;Ham, Jungsoo;Choi, Jinmu
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_3
    • /
    • pp.1435-1446
    • /
    • 2021
  • Wind and flood damage caused by typhoons causes a lot of damage to the Korean Peninsula every year. In order to minimize damage, a preliminary analysis of damage estimation and evacuation routes is required for rapid decision-making. This study attempted to develop an analysis module that can provide necessary information according to the disaster stage. For use in the preparation stage, A function to check past typhoon routes and past damage information similar to typhoon routes heading north, a function to extract isolated dangerous areas, and a function to extract reservoir collapse areas were developed. For use in the early stages of response and recovery, a function to extract the expected flooding range considering the current flooding depth, a function to analyze expected damage information on population, buildings, farmland, and a function to provide evacuation information were included. In addition, an automated web map creation method was proposed to express the analysis results. The analysis function was developed and modularized based on Python open source, and the web display function was implemented based on JavaScript. The tools developed in this study are expected to be efficiently used for rapid decision-making in the early stages of monitoring against storm and flood damage.

Maintenance of Platelet Counts with Low Level QC Materials and the Change in P-LCR according to Hemolysis with XN-9000 (XN-9000장비에서 Low Level QC물질에서의 혈소판 수 관리와 용혈에 따른 P-LCR의 변화)

  • Shim, Moon-Jung;Lee, Hyun-A
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.50 no.4
    • /
    • pp.399-405
    • /
    • 2018
  • The platelet count in clinical laboratories is essential for the diagnosis and treatment of hemostasis abnormalities, and accurate platelet counting in the low count range is of prime importance for deciding if a platelet transfusion is needed and for monitoring after chemotherapy. Quality control is designed to reduce and correct any deficiencies in the internal analytical process of a clinical laboratory prior to the release of patient results. Fragmented erythrocytes are the major confusing factors for platelet counting because of their similar size to platelets. The authors found that the low range QC values were out of 2SD with a Sysmex automatic analyzer in internal quality control process. Thus far, there has been little discussion on the relationship between hemolysis and the platelet parameters. Therefore, this study focused on the performance of automated platelet counts, including the PLT-F, the PLT-I, and PLT-O methods at the low platelet range using the low level QC materials and compared the 5 platelet parameters with the hemolyzed samples. The results showed that the CV was the smallest with PLT-F and P-LCR increased from 18.4 to 31.9% in the hemolysis samples. These results indicate that a more accurate estimation of the platelet counts can be achieved using the PLT-F method than the PLT-I method at the low platelet range. The use of the PLT-F system improves the confidence of results in low platelets samples in a routine hematology laboratory. The results suggest that P-LCR is a new parameter in assessing samples when the specimen is suspected of hemolysis and deterioration. Nevertheless, further studies will be needed to establish the relationship with P-LCR and hemolysis using human blood specimens.

Development of Low-Power IoT Sensor and Cloud-Based Data Fusion Displacement Estimation Method for Ambient Bridge Monitoring (상시 교량 모니터링을 위한 저전력 IoT 센서 및 클라우드 기반 데이터 융합 변위 측정 기법 개발)

  • Park, Jun-Young;Shin, Jun-Sik;Won, Jong-Bin;Park, Jong-Woong;Park, Min-Yong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.5
    • /
    • pp.301-308
    • /
    • 2021
  • It is important to develop a digital SOC (Social Overhead Capital) maintenance system for preemptive maintenance in response to the rapid aging of social infrastructures. Abnormal signals induced from structures can be detected quickly and optimal decisions can be made promptly using IoT sensors deployed on the structures. In this study, a digital SOC monitoring system incorporating a multimetric IoT sensor was developed for long-term monitoring, for use in cloud-computing server for automated and powerful data analysis, and for establishing databases to perform : (1) multimetric sensing, (2) long-term operation, and (3) LTE-based direct communication. The developed sensor had three axes of acceleration, and five axes of strain sensing channels for multimetric sensing, and had an event-driven power management system that activated the sensors only when vibration exceeded a predetermined limit, or the timer was triggered. The power management system could reduce power consumption, and an additional solar panel charging could enable long-term operation. Data from the sensors were transmitted to the server in real-time via low-power LTE-CAT M1 communication, which does not require an additional gateway device. Furthermore, the cloud server was developed to receive multi-variable data from the sensor, and perform a displacement fusion algorithm to obtain reference-free structural displacement for ambient structural assessment. The proposed digital SOC system was experimentally validated on a steel railroad and concrete girder bridge.

Estimation and Evaluation of Reanalysis Air Temperature based on Mountain Meteorological Observation (산악기상정보 융합 기반 재분석 기온 데이터의 추정 및 검증)

  • Sunghyun, Min;Sukhee, Yoon;Myongsoo, Won;Junghwa, Chun;Keunchang, Jang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.4
    • /
    • pp.244-255
    • /
    • 2022
  • This study estimated and evaluated the high resolution (1km) gridded mountain meteorology data of daily mean, maximum and minimum temperature based on ASOS (Automated Surface Observing System), AWS (Automatic Weather Stations) and AMOS (Automatic Mountain Meteorology Observation System) in South Korea. The ASOS, AWS, and AMOS meteorology data which were located above 200m was classified as mountainous area. And the ASOS, AWS, and AMOS meteorology data which were located under 200m was classified as non-mountainous area. The bias-correction method was used for correct air temperature over complex mountainous area and the performance of enhanced daily coefficients based on the AMOS and mountainous area observing meteorology data was evaluated using the observed daily mean, maximum and minimum temperature. As a result, the evaluation results show that RMSE (Root Mean Square Error) of air temperature using the enhanced coefficients based on the mountainous area observed meteorology data is smaller as 30% (mean), 50% (minimum), and 37% (maximum) than that of using non-mountainous area observed meteorology data. It indicates that the enhanced weather coefficients based on the AMOS and mountain ASOS can estimate mean, maximum, and minimum temperature data reasonably and the temperature results can provide useful input data on several climatological and forest disaster prediction studies.

A Study on Risk Parity Asset Allocation Model with XGBoos (XGBoost를 활용한 리스크패리티 자산배분 모형에 관한 연구)

  • Kim, Younghoon;Choi, HeungSik;Kim, SunWoong
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.135-149
    • /
    • 2020
  • Artificial intelligences are changing world. Financial market is also not an exception. Robo-Advisor is actively being developed, making up the weakness of traditional asset allocation methods and replacing the parts that are difficult for the traditional methods. It makes automated investment decisions with artificial intelligence algorithms and is used with various asset allocation models such as mean-variance model, Black-Litterman model and risk parity model. Risk parity model is a typical risk-based asset allocation model which is focused on the volatility of assets. It avoids investment risk structurally. So it has stability in the management of large size fund and it has been widely used in financial field. XGBoost model is a parallel tree-boosting method. It is an optimized gradient boosting model designed to be highly efficient and flexible. It not only makes billions of examples in limited memory environments but is also very fast to learn compared to traditional boosting methods. It is frequently used in various fields of data analysis and has a lot of advantages. So in this study, we propose a new asset allocation model that combines risk parity model and XGBoost machine learning model. This model uses XGBoost to predict the risk of assets and applies the predictive risk to the process of covariance estimation. There are estimated errors between the estimation period and the actual investment period because the optimized asset allocation model estimates the proportion of investments based on historical data. these estimated errors adversely affect the optimized portfolio performance. This study aims to improve the stability and portfolio performance of the model by predicting the volatility of the next investment period and reducing estimated errors of optimized asset allocation model. As a result, it narrows the gap between theory and practice and proposes a more advanced asset allocation model. In this study, we used the Korean stock market price data for a total of 17 years from 2003 to 2019 for the empirical test of the suggested model. The data sets are specifically composed of energy, finance, IT, industrial, material, telecommunication, utility, consumer, health care and staple sectors. We accumulated the value of prediction using moving-window method by 1,000 in-sample and 20 out-of-sample, so we produced a total of 154 rebalancing back-testing results. We analyzed portfolio performance in terms of cumulative rate of return and got a lot of sample data because of long period results. Comparing with traditional risk parity model, this experiment recorded improvements in both cumulative yield and reduction of estimated errors. The total cumulative return is 45.748%, about 5% higher than that of risk parity model and also the estimated errors are reduced in 9 out of 10 industry sectors. The reduction of estimated errors increases stability of the model and makes it easy to apply in practical investment. The results of the experiment showed improvement of portfolio performance by reducing the estimated errors of the optimized asset allocation model. Many financial models and asset allocation models are limited in practical investment because of the most fundamental question of whether the past characteristics of assets will continue into the future in the changing financial market. However, this study not only takes advantage of traditional asset allocation models, but also supplements the limitations of traditional methods and increases stability by predicting the risks of assets with the latest algorithm. There are various studies on parametric estimation methods to reduce the estimated errors in the portfolio optimization. We also suggested a new method to reduce estimated errors in optimized asset allocation model using machine learning. So this study is meaningful in that it proposes an advanced artificial intelligence asset allocation model for the fast-developing financial markets.

Analyzing Contextual Polarity of Unstructured Data for Measuring Subjective Well-Being (주관적 웰빙 상태 측정을 위한 비정형 데이터의 상황기반 긍부정성 분석 방법)

  • Choi, Sukjae;Song, Yeongeun;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.83-105
    • /
    • 2016
  • Measuring an individual's subjective wellbeing in an accurate, unobtrusive, and cost-effective manner is a core success factor of the wellbeing support system, which is a type of medical IT service. However, measurements with a self-report questionnaire and wearable sensors are cost-intensive and obtrusive when the wellbeing support system should be running in real-time, despite being very accurate. Recently, reasoning the state of subjective wellbeing with conventional sentiment analysis and unstructured data has been proposed as an alternative to resolve the drawbacks of the self-report questionnaire and wearable sensors. However, this approach does not consider contextual polarity, which results in lower measurement accuracy. Moreover, there is no sentimental word net or ontology for the subjective wellbeing area. Hence, this paper proposes a method to extract keywords and their contextual polarity representing the subjective wellbeing state from the unstructured text in online websites in order to improve the reasoning accuracy of the sentiment analysis. The proposed method is as follows. First, a set of general sentimental words is proposed. SentiWordNet was adopted; this is the most widely used dictionary and contains about 100,000 words such as nouns, verbs, adjectives, and adverbs with polarities from -1.0 (extremely negative) to 1.0 (extremely positive). Second, corpora on subjective wellbeing (SWB corpora) were obtained by crawling online text. A survey was conducted to prepare a learning dataset that includes an individual's opinion and the level of self-report wellness, such as stress and depression. The participants were asked to respond with their feelings about online news on two topics. Next, three data sources were extracted from the SWB corpora: demographic information, psychographic information, and the structural characteristics of the text (e.g., the number of words used in the text, simple statistics on the special characters used). These were considered to adjust the level of a specific SWB. Finally, a set of reasoning rules was generated for each wellbeing factor to estimate the SWB of an individual based on the text written by the individual. The experimental results suggested that using contextual polarity for each SWB factor (e.g., stress, depression) significantly improved the estimation accuracy compared to conventional sentiment analysis methods incorporating SentiWordNet. Even though literature is available on Korean sentiment analysis, such studies only used only a limited set of sentimental words. Due to the small number of words, many sentences are overlooked and ignored when estimating the level of sentiment. However, the proposed method can identify multiple sentiment-neutral words as sentiment words in the context of a specific SWB factor. The results also suggest that a specific type of senti-word dictionary containing contextual polarity needs to be constructed along with a dictionary based on common sense such as SenticNet. These efforts will enrich and enlarge the application area of sentic computing. The study is helpful to practitioners and managers of wellness services in that a couple of characteristics of unstructured text have been identified for improving SWB. Consistent with the literature, the results showed that the gender and age affect the SWB state when the individual is exposed to an identical queue from the online text. In addition, the length of the textual response and usage pattern of special characters were found to indicate the individual's SWB. These imply that better SWB measurement should involve collecting the textual structure and the individual's demographic conditions. In the future, the proposed method should be improved by automated identification of the contextual polarity in order to enlarge the vocabulary in a cost-effective manner.

Development of Robotic Inspection System over Bridge Superstructure (교량 상판 하부 안전점검 로봇개발)

  • Nam Soon-Sung;Jang Jung-Whan;Yang Kyung-Taek
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.180-185
    • /
    • 2003
  • The increase of traffic over a bridge has been emerged as one of the most severe problems in view of bridge maintenance, since the load effect caused by the vehicle passage over the bridge has brought out a long-term damage to bridge structure, and it is nearly impossible to maintain operational serviceability of bridge to user's satisfactory level without any concern on bridge maintenance at the phase of completion. Moreover, bridge maintenance operation should be performed by regular inspection over the bridge to prevent structural malfunction or unexpected accidents front breaking out by monitoring on cracks or deformations during service. Therefore, technical breakthrough related to this uninterested field of bridge maintenance leading the public to the turning point of recognition is desperately needed. This study has the aim of development on automated inspection system to lower surface of bridge superstructures to replace the conventional system of bridge inspection with the naked eye, where the monitoring staff is directly on board to refractive or other type of maintenance .vehicles, with which it is expected that we can solve the problems essentially where the results of inspection are varied to change with subjective manlier from monitoring staff, increase stabilities in safety during the inspection, and make contribution to construct data base by providing objective and quantitative data and materials through image processing method over data captured by cameras. By this system it is also expected that objective estimation over the right time of maintenance and reinforcement work will lead enormous decrease in maintenance cost.

  • PDF