• Title/Summary/Keyword: Automated Error Detection

Search Result 44, Processing Time 0.023 seconds

Automated algorithm of automated auditory brainstem response for neonates (신생아 청성뇌간 반응의 자동 판독 알고리즘)

  • Jung, Won-Hyuk;Hong, Hyun-Ki;Nam, Ki-Chang;Cha, Eun-Jong;Kim, Deok-Won
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.1
    • /
    • pp.100-107
    • /
    • 2007
  • AABR(automated auditory brainstem response) test is used for the screening purpose of hearing ability of neonates. In this paper, algorithm using Rolle's theorem is suggested for automatic detection of the ensemble averaged ABR waveform. The ABR waveforms were recorded from 55 normal-hearing ears of neonates at screening levels varying from 30 to 60 dBnHL. Recorded signals were analyzed by expert audiologist and by the proposed algorithm. The results showed that the proposed algorithm correctly identified latencies of the major ABR waves (III, V) with latent difference below 0.2 ms. No significant differences were found between the two methods. We also analyzed the ABR signals using derivative algorithm and compared the results with proposed algorithm. The number of detected candidate waves using the proposed algorithm was 47 % less than that of the existing one. The proposed method had lower relative errors (0.01 % error at 60dBnHL) compared to the existing one. By using proposed algorithm, clinicians can detect and label waves III and V more objectively and quantitatively than the manual detection method.

Pulse-Coded Train and QRS Feature extraction Using Linear Prediction (선형예측법을 이용한 심전도 신호의 부호화와 특징추출)

  • Song, Chul-Gyu;Lee, Byung-Chae;Jeong, Kee-Sam;Lee, Myoung-Ho
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.05
    • /
    • pp.175-178
    • /
    • 1992
  • This paper proposes a method called linear prediction (a high performant technique in digital speech processing) for analyzing digital ECG signals. There are several significant properties indicating that ECG signals have an important feature in the residual error signal obtained after processing by Durbin's linear prediction algorithm. The ECG signal classification puts an emphasis on the residual error signal. For each ECG's QRS complex. the feature for recognition is obtained from a nonlinear transformation which transforms every residual error signal to set of three states pulse-cord train relative to the original ECG signal. The pulse-cord train has the advantage of easy implementation in digital hardware circuits to achive automated ECG diagnosis. The algorithm performs very well feature extraction in arrythmia detection. Using this method, our studies indicate that the PVC (premature ventricular contration) detection has a at least 90 percent sensityvity for arrythmia data.

  • PDF

Health monitoring of pressurized pipelines by finite element method using meta-heuristic algorithms along with error sensitivity assessment

  • Amirmohammad Jahan;Mahdi Mollazadeh;Abolfazl Akbarpour;Mohsen Khatibinia
    • Structural Engineering and Mechanics
    • /
    • v.87 no.3
    • /
    • pp.211-219
    • /
    • 2023
  • The structural health of a pipeline is usually assessed by visual inspection. In addition to the fact that this method is expensive and time consuming, inspection of the whole structure is not possible due to limited access to some points. Therefore, adopting a damage detection method without the mentioned limitations is important in order to increase the safety of the structure. In recent years, vibration-based methods have been used to detect damage. These methods detect structural defects based on the fact that the dynamic responses of the structure will change due to damage existence. Therefore, the location and extent of damage, before and after the damage, are determined. In this study, fuzzy genetic algorithm has been used to monitor the structural health of the pipeline to create a fuzzy automated system and all kinds of possible failure scenarios that can occur for the structure. For this purpose, the results of an experimental model have been used. Its numerical model is generated in ABAQUS software and the results of the analysis are used in the fuzzy genetic algorithm. Results show that the system is more accurate in detecting high-intensity damages, and the use of higher frequency modes helps to increase accuracy. Moreover, the system considers the damage in symmetric regions with the same degree of membership. To deal with the uncertainties, some error values are added, which are observed to be negligible up to 10% of the error.

Localization of hotspots via a lightweight system combining Compton imaging with a 3D lidar camera

  • Mattias Simons;David De Schepper;Eric Demeester;Wouter Schroeyers
    • Nuclear Engineering and Technology
    • /
    • v.56 no.8
    • /
    • pp.3188-3198
    • /
    • 2024
  • Efficient and secure decommissioning of nuclear facilities demands advanced technologies. In this context, gamma-ray detection and imaging are crucial in identifying radioactive hotspots and monitoring radiation levels. Our study is dedicated to developing a gamma-ray detection system tailored for integration into robotic platforms for nuclear decommissioning, offering a safe and automated solution for this intricate task and ensuring the safety of human operators by mitigating radiation exposure and streamlining hotspot localization. Our approach integrates a Compton camera based 3D reconstruction algorithm with a single Timepix3 detector. This eliminates the need for a second detector and significantly reduces system weight and cost. Additionally, combining a 3D camera with the setup enhances hotspot visualization and interpretation, rendering it an ideal solution for practical nuclear decommissioning applications. In a proof-of-concept measurement utilizing a 137Cs source, our system accurately localized and visualized the source in 3D with an angular error of 1° and estimated the activity with a 3% relative error. This promising result underscores the system's potential for deployment in real-world decommissioning settings. Future endeavors will expand the technology's applications in authentic decommissioning scenarios and optimize its integration with robotic platforms. The outcomes of our study contribute to heightened safety and accuracy for nuclear decommissioning works through the advancement of cost-effective and efficient gamma-ray detection systems.

A Design Procedure for Safety Simulation System Using Virtual Reality

  • Ki, Jae-Seug
    • Journal of the Korea Safety Management & Science
    • /
    • v.1 no.1
    • /
    • pp.69-77
    • /
    • 1999
  • One of the objectives of any task design is to provide a safe and helpful workplace for the employees. The safety and health module may include means for confronting the design with safety and health regulations and standards as well as tools for obstacles and collisions detection (such as error models and simulators), Virtual Reality is a leading edge technology which has only very recently become available on platforms and at prices accessible to the majority of simulation engineers. The design of an automated manufacturing system is a complicated, multidisciplinary task that requires involvement of several specialists. In this paper, a design procedure that facilitates the safety and ergonomic considerations of an automated manufacturing system are described. The procedure consists of the following major steps. Data collection and analysis of the data, creation of a three-dimensional simulation model of the work environment, simulation for safety analysis and risk assessment, development of safety solutions, selection of the preferred solutions, implementation of the selected solutions, reporting, and training. When improving the safety of an existing system the three-dimensional simulation model helps the designer to perceive the work from operators point of view objectively and safely without the exposure to hazards of the actual system.

  • PDF

Performance Estimation of an Implantable Epileptic Seizure Detector with a Low-power On-chip Oscillator

  • Kim, Sunhee;Choi, Yun Seo;Choi, Kanghyun;Lee, Jiseon;Lee, Byung-Uk;Lee, Hyang Woon;Lee, Seungjun
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.169-176
    • /
    • 2015
  • Implantable closed-loop epilepsy controllers require ideally both accurate epileptic seizure detection and low power consumption. On-chip oscillators can be used in implantable devices because they consume less power than other oscillators such as crystal oscillators. In this study, we investigated the tolerable error range of a lower power on-chip oscillator without losing the accuracy of seizure detection. We used 24 ictal and 14 interictal intracranial electroencephalographic segments recorded from epilepsy surgery patients. The performance variations with respect to oscillator frequency errors were estimated in terms of specificity, modified sensitivity, and detection timing difference of seizure onset using Generic Osorio Frei Algorithm. The frequency errors of on-chip oscillators were set at ${\pm}10%$ as the worst case. Our results showed that an oscillator error of ${\pm}10%$ affected both specificity and modified sensitivity by less than 3%. In addition, seizure onsets were detected with errors earlier or later than without errors and the average detection timing difference varied within less than 0.5 s range. The results suggest that on-chip oscillators could be useful for low-power implantable devices without error compensation circuitry requiring significant additional power. These findings could help the design of closed-loop systems with a seizure detector and automated stimulators for intractable epilepsy patients.

Improved Two-Phase Framework for Facial Emotion Recognition

  • Yoon, Hyunjin;Park, Sangwook;Lee, Yongkwi;Han, Mikyong;Jang, Jong-Hyun
    • ETRI Journal
    • /
    • v.37 no.6
    • /
    • pp.1199-1210
    • /
    • 2015
  • Automatic emotion recognition based on facial cues, such as facial action units (AUs), has received huge attention in the last decade due to its wide variety of applications. Current computer-based automated two-phase facial emotion recognition procedures first detect AUs from input images and then infer target emotions from the detected AUs. However, more robust AU detection and AU-to-emotion mapping methods are required to deal with the error accumulation problem inherent in the multiphase scheme. Motivated by our key observation that a single AU detector does not perform equally well for all AUs, we propose a novel two-phase facial emotion recognition framework, where the presence of AUs is detected by group decisions of multiple AU detectors and a target emotion is inferred from the combined AU detection decisions. Our emotion recognition framework consists of three major components - multiple AU detection, AU detection fusion, and AU-to-emotion mapping. The experimental results on two real-world face databases demonstrate an improved performance over the previous two-phase method using a single AU detector in terms of both AU detection accuracy and correct emotion recognition rate.

Evaluation of a multi-stage convolutional neural network-based fully automated landmark identification system using cone-beam computed tomography-synthesized posteroanterior cephalometric images

  • Kim, Min-Jung;Liu, Yi;Oh, Song Hee;Ahn, Hyo-Won;Kim, Seong-Hun;Nelson, Gerald
    • The korean journal of orthodontics
    • /
    • v.51 no.2
    • /
    • pp.77-85
    • /
    • 2021
  • Objective: To evaluate the accuracy of a multi-stage convolutional neural network (CNN) model-based automated identification system for posteroanterior (PA) cephalometric landmarks. Methods: The multi-stage CNN model was implemented with a personal computer. A total of 430 PA-cephalograms synthesized from cone-beam computed tomography scans (CBCT-PA) were selected as samples. Twenty-three landmarks used for Tweemac analysis were manually identified on all CBCT-PA images by a single examiner. Intra-examiner reproducibility was confirmed by repeating the identification on 85 randomly selected images, which were subsequently set as test data, with a two-week interval before training. For initial learning stage of the multi-stage CNN model, the data from 345 of 430 CBCT-PA images were used, after which the multi-stage CNN model was tested with previous 85 images. The first manual identification on these 85 images was set as a truth ground. The mean radial error (MRE) and successful detection rate (SDR) were calculated to evaluate the errors in manual identification and artificial intelligence (AI) prediction. Results: The AI showed an average MRE of 2.23 ± 2.02 mm with an SDR of 60.88% for errors of 2 mm or lower. However, in a comparison of the repetitive task, the AI predicted landmarks at the same position, while the MRE for the repeated manual identification was 1.31 ± 0.94 mm. Conclusions: Automated identification for CBCT-synthesized PA cephalometric landmarks did not sufficiently achieve the clinically favorable error range of less than 2 mm. However, AI landmark identification on PA cephalograms showed better consistency than manual identification.

Assembly performance evaluation method for prefabricated steel structures using deep learning and k-nearest neighbors

  • Hyuntae Bang;Byeongjun Yu;Haemin Jeon
    • Smart Structures and Systems
    • /
    • v.32 no.2
    • /
    • pp.111-121
    • /
    • 2023
  • This study proposes an automated assembly performance evaluation method for prefabricated steel structures (PSSs) using machine learning methods. Assembly component images were segmented using a modified version of the receptive field pyramid. By factorizing channel modulation and the receptive field exploration layers of the convolution pyramid, highly accurate segmentation results were obtained. After completing segmentation, the positions of the bolt holes were calculated using various image processing techniques, such as fuzzy-based edge detection, Hough's line detection, and image perspective transformation. By calculating the distance ratio between bolt holes, the assembly performance of the PSS was estimated using the k-nearest neighbors (kNN) algorithm. The effectiveness of the proposed framework was validated using a 3D PSS printing model and a field test. The results indicated that this approach could recognize assembly components with an intersection over union (IoU) of 95% and evaluate assembly performance with an error of less than 5%.

Design of Preprocessing Algorithm for HD-Map-based Global Path Generation (정밀도로지도 기반 전역경로 생성을 위한 전처리 알고리즘 개발)

  • Hong, Seungwoo;Son, Weonil;Park, Kihong;Kwun, Suktae;Choi, Inseong;Cho, Sungwoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.1
    • /
    • pp.273-286
    • /
    • 2022
  • An HD map is essential in the automated driving of level 4 and above to generate the vehicle's global path since it contains road information and each road's lane information. Therefore, all the road elements in the HD map must be correctly defined to construct the correct road network necessary to generate the global path. But unfortunately, it is not difficult to find various errors even in the most recent HD maps. Hence, a preprocessing algorithm has been developed to detect and correct errors in the HD map. This error detection and correction result in constructing the correct road network for use in global path planning. Furthermore, the algorithm was tested on real roads' HD maps, demonstrating its validity.