• Title/Summary/Keyword: Autoignition temperature(AIT)

Search Result 73, Processing Time 0.02 seconds

Measurement of Autoignition Temperature of Propionic Acid and 3-Hexanone System (Propionic acid와 3-Hexanone 계의 최소자연발화온도의 측정)

  • Ha, Dong-Myeong
    • Fire Science and Engineering
    • /
    • v.28 no.4
    • /
    • pp.44-49
    • /
    • 2014
  • The autoignition temperaturs (AIT) of solvent mixture is important index for the safe handling of flammable liquids which constitute the solvent mixtures. This study measured the AIT and ignition delay time for Propionic acid and 3-Hexanone system by using ASTM E659 apparatus. The AITs of Propionic acid and 3-Hexanone which constituted binary system were $511^{\circ}C$ and $425^{\circ}C$, respectively. The experimental AIT of Propionic acid and 3-Hexanone system were a good agreement with the calculated AIT by the proposed equations with a few average absolute deviation (A.A.D.). And Propionic acid and 3-Hexanone system was shown the minimum autoignition temperature behavior (MAITB).

Measurement and Prediction of Autoignition Temperature(AIT) of n-Propanol and Acetic acid System (노말프로판올과 아세틱에씨드 계의 최소자연발화온도(AIT) 측정 및 예측)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.2
    • /
    • pp.66-71
    • /
    • 2017
  • The autoignition temperature (AIT) is crucial combustible characteristics which need attention in chemical process that handle hazardous materials. The AIT, also to as minimum spontaneous ignition temperature(MSIT), is the lowest temperature of a hot surface at which the substance will spontaneously ignite without any obvious sources of ignition such as a spark or flame. The AIT may be used as combustion property to specify operating, storage, and materials handling procedures for process safety. This study measured the AITs of n-propanol+acetic acid system from ignition delay time(time lag) by using ASTM E659 apparatus. The AITs of n-propanol and acetic acid which constituted binary system were $435^{\circ}C$ and $212^{\circ}C$, respectively. The experimental AITs of n-propanol+acetic acid system were a good agreement with the calculated AITs by the proposed equations with a few A.A.D.(average absolute deviation). In the case of n-propanol and acetic acid system, the minimum autoignition temperature behavior (MAITB), which is lower than the lower AIT, is shown among the two pure substances constituting the mixture.

Minimum Autoignition Temperature Behavior(MAITB) of the Flammable Binary Systems (가연성 이성분계의 최소자연발화온도 거동(MAITB))

  • Ha, Dong-Myeong;Lee, Sung-Jin
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.6
    • /
    • pp.70-75
    • /
    • 2008
  • The values of the AIT(Autoignition temperature) for fire and explosion protection are normally the lowest reported. The minimum autoignition temperature behavior(MAITB) of flammable liquid mixtures is exhibited when the AIT of mixture is below the AIT of the individual components. The MAITB is an interesting experimental features, which can be significant from the perspective of industrial safety. In this study, the AITs of m-xylene+n-butyric acid and ethylbenzene+n-butanol systems were measured using ASTM E659-78 apparatus. The AITs of m-xylene, n-butyric acid, ethylbenzene and n-butanol which constituted two binary systems were $587^{\circ}C$, $510^{\circ}C$, $475^{\circ}C$ and $340^{\circ}C$ respectively. The m-xylene+n-butyric acid system is exhibited MAITB at 0.3 mole fraction of m-xylene, and its minimum autoignition temperature was $460^{\circ}C$.

Measurement of Autoignition Temperature for Toluene + iso-Propanol (IPA) and p-Xylene+n-Butanol Systems (Toluene과 iso-Propanol계 및 p-Xylene과 n-Butanol계의 자연발화온도 측정)

  • Yoon, Yeo-Song;Ha, Dong-Myeong;Yu, Hyun-Sik;Lee, Yong-Soon
    • Fire Science and Engineering
    • /
    • v.24 no.2
    • /
    • pp.172-177
    • /
    • 2010
  • The values of the AIT (autoignition temperature) for fire and explosion protection are normally the lowest reported. The MAITB (Minimum Autoignition Temperature Behavior) of flammable liquid mixture is exhibited when the AITs of mixture is below the AIT of the individual components. The MAITB is an interesting experimental features, which can be significant from the perspective of industrial fire safety. In this study, the AITs of toluene + iso-propanol(IPA) and p-xylene + n-butanol systems were measured using ASTM E659-78 apparatus. The AITs of toluene, iso-propanol (IPA), pxylene and n-butanol which constituted two binary systems were $547^{\circ}C,\;463^{\circ}C,\;557^{\circ}C$ and $340^{\circ}C$ respectively. The toluene + iso-propanol(IPA) system is exhibited MAITB at 0.3 mole fraction of toluene, and its minimum autoignition temperature was $460^{\circ}C$.

Prediction and Measurement of Autoignition Temperature of Toluene and 2-Butanol System (톨루엔과 2-부탄올 계의 최소자연발화온도의 측정 및 예측)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.4
    • /
    • pp.73-78
    • /
    • 2015
  • The autoignition temperatures(AIT) of solvent mixture is important index for the safe handling of flammable liquids which constitute the solvent mixtures. Therefore, the AITs of common pure chemical substances are widely reported, but very limited data are available for mixtures. This study, the toluene and 2-butnaol system which used mixture solution solvent was measured the AIT and ignition delay time by using ASTM E659 apparatus. The AITs of toluene and 2-butanol constituted binary system were $547^{\circ}C$ and $400^{\circ}C$, respectively. The experimental AIT of toluene and 2-butanol were a good agreement with the calculated AIT by the proposed equations with a few average absolute deviation(A.A.D.).

Characteristics of Auto-ignition for Trichlorosliane and Dichlorosilane-Trichlorosliane Mixtures (Trichlorosliane 및 Dichlorosilane-Trichlorosliane 혼합물의 자연발화 특성)

  • Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.4
    • /
    • pp.24-30
    • /
    • 2010
  • An accurate information of the autoignition temperature(AIT) is important in developing appropriate prevention and control measures in industrial fire. This study measured the AITs of trichlorosliane and dichlosilane(DCS)-trichlorosliane(TCS) mixtures by using ASTM E659-78 apparatus. The experiment AITs of trichlorosliane, TCS(90wt%)-DCS(10wt%) and the TCS(70wt%)-DCS(30wt%) were $225^{\circ}C,\;250^{\circ}C\;and\;236^{\circ}C$, respectively.

Measurement and Prediction of Autoignition Temperature of n-Propanol+n-Decane Mixture (노말프로판올과 노말데칸 혼합물의 최소자연발화온도 측정 및 예측)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.6
    • /
    • pp.55-61
    • /
    • 2014
  • The autoignition temperature (AIT) of a material is the lowest temperature at which the substance will spontaneously ignite in the absence of an external ignition source such as a spark or flame. The AIT may be used as combustion property to specify operating, storage, and materials handling procedures for processs safety. This study measured the AITs of n-Propanol+n-Decane system from ignition delay time(time lag) by using ASTM E659 apparatus. The AITs of n-Propanol and n-Decane which constituted binary system were $435^{\circ}C$ and $212^{\circ}C$, respectively. The experimental AITs of n-Propanol+n-Decane system were a good agreement with the calculated AITs by the proposed equations with a few A.A.D(average absolute deviation).

The Minimum Autoignition Temperature Behavior(MAITB) of n-Decane and Acetic acid Mixture (n-Decane과 Acetic acid 혼합물의 최소자연발화온도 거동)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.2
    • /
    • pp.49-54
    • /
    • 2013
  • The autoignition temperature(AIT) is important index for the safe handling of flammable liquids which constitute the solvent mixtures. This study measured the AITs and ignition delay time for n-Decane and Acetic acid system by using ASTM E659 apparatus. The AITs of n-Decane and Acetic acid which constituted binary system were $212^{\circ}C$ and $512^{\circ}C$, respectively. The experimental AITs of n-Decane and Acetic acid system were a good agreement with the calculated AITs by the proposed equations with a few A.A.D.(average absolute deviation). And n-Decane and Acetic acid system was shown the minimum autoignition temperature behavior(MAITB).

Prediction of Autoignition Temperatures of Gasoline-Ethanol Blended Fuels (휘발유/에탄올 혼합연료의 자연점화온도 예측)

  • Kim, Shin-Woo;Lee, Eui-Ju
    • Fire Science and Engineering
    • /
    • v.33 no.5
    • /
    • pp.1-6
    • /
    • 2019
  • The recent development of biofuel production technology facilitates the widespread use of bioethanol and biodiesel by mixing them with fossil fuels. However, the use of these new blended fuels in combustion could result in severe safety problems, such as fire and explosion. In this study, numerical simulation was performed on the well-stirred reactor (WSR) to simulate the autoignition temperature (AIT) in homogeneous combustion and clarify the effect of ethanol addition on the AIT, the most important property for assessing the potential for fire and explosion. Response surface methodology (RSM) was introduced as a design of experiment (DOE), enabling the AIT to be predicted and optimized systematically with respect to three independent variables: ethanol mole fraction, equivalence ratio, and pressure. The results show that the autoignition temperature primarily depends on the ethanol mole fraction and pressure, while the effects of the equivalence ratio are independent of the AIT. RSM accurately predicted the experimental AIT, indicating that this method can be used to effectively predict the key properties involved in fires and explosions.

Relationship between Autoigniton Temperature(AIT) and Ignition Delay Time for Acids (산(Acid)류의 자연발화온도와 방화지연시간의 관계)

  • 하동명
    • Fire Science and Engineering
    • /
    • v.18 no.2
    • /
    • pp.27-33
    • /
    • 2004
  • An accurate knowledge of the AIT(Autoignition temperatures) of chemicals is important in developing appropriate prevention and control measures in industrial fire protection. The AITs describe the minimum temperature to which a substance must be heated, without the application of a flame or spark, which will cause that substance to ignite. The measurement AITs are dependent upon many factors. namely initial temperature. pressure, volume, fuel/air stoichiometry. catalyst material, concentration of vapor, ignition delay time. This study measured the AITs of acids from ignition delay time by using ASTM E659-78 apparatus which was produced in the year 1994. The experiment AITs were a good agreement with the calculated AITs by the proposed equations with a few A.A.P.E.(average absolute percent error) and A.A.D.(average absolute deviation).