• 제목/요약/키워드: Autoignition

검색결과 161건 처리시간 0.017초

탄화수소계 연료의 축소반응모델과 가솔린연료의 옥탄가 변화에 따른 자발화 지연시간 (Simplified Reaction Scheme of Hydrocarbon Fuels and Its Application to Autoignition of Gasoline with Different Octane Numbers)

  • 여진구
    • 한국자동차공학회논문집
    • /
    • 제11권3호
    • /
    • pp.13-19
    • /
    • 2003
  • Mathematically simplified reaction scheme that simulates autoignitions of the end gases in spark ignition engines has been studied computationally. The five equation model is described, to predict the essential features of hydrocarbon oxidation. This scheme has been calibrated against autoignition delay times measured in rapid compression machines. The rate constants, activation temperatures, Ta, Arrhenius preexponential constants, A, and heats of reaction for stoichiometric n-heptane/air, iso-octane/air, and their mixtures have all been optimised. The optimisation has been guided by Morley's correlation of the ratio of chain branching to linear termination rates with octane number. Comparisons between computed and experimental autoignition delay times have validated the Present simplified reaction scheme and the influences of octane number upon autoignition delay times have been computationally investigated. It has been found that both cool flame and high temperature direct reactions can have an effect on autoignition delay times.

A Computational Study about Effects of Operating parameters and EGR compositions on Autoignition Reactivity for DME HCCI Combustion

  • Jamsran, Narankhuu;Lim, Ocktaeck
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.305-307
    • /
    • 2012
  • This study was computationally explored how the fuel autoignition reactivity was affected by operating parameters such as fuel, pressure, intake temperatures, engine speed and EGR compositions for HCCI combustion. This is done for DME and CHEMKIN-PRO was used as a solver. At first, influence of the operating parameters and EGR compositions were showed. And then, in order to clarify the mechanism of them on autoignition reactivity, data-sets of kinetic were analyzed to investigate the elementary reaction path for heat release at transient tempeatures by using contribution matrix.

  • PDF

Toluene과 iso-Propanol계 및 p-Xylene과 n-Butanol계의 자연발화온도 측정 (Measurement of Autoignition Temperature for Toluene + iso-Propanol (IPA) and p-Xylene+n-Butanol Systems)

  • 윤여송;하동명;유현식;이영순
    • 한국화재소방학회논문지
    • /
    • 제24권2호
    • /
    • pp.172-177
    • /
    • 2010
  • 가연성 혼합물의 최소자연발화온도 거동(MAITB, Minimum Autoignition Temperature Behavior)은 어떤 조성에서 두개의 순수물질 가운데 낮은 물질의 AIT보다 낮은 AIT를 갖는 현상을 말하며, 이는 위험물을 취급하는 공정에서 매우 관심있는 분야이다. 본 연구는 ASTM E659-78(Standard Test Method for Autoignition Temperature of Liquid Chemical)을 이용하여 toluene과 iso-propanol(IPA) 및 p-xylene과 n-butanol혼합물의 최소자연발화온도를 측정하였다. Toluene, IPA, p-xylene 그리고 n-butanol의 자연발화 온도는 각각 $547^{\circ}C,\;463^{\circ}C,\;557^{\circ}C,\;340^{\circ}C$였다. Toluene과 iso-propanol(IPA) 계의 경우는 3 : 7(Toluene :IPA) 비율의 혼합물 일 때는 IPA순수물질($464^{\circ}C$)보다 자연발화온도가 약 $3^{\circ}C$ 낮은 혼합물의 최소자연발화온도거동 MAITB(Minimum Autoignition Temperature Behavior)을 보였다.

탄화수소계 연료의 축소반응모텔과 노말-헵탄(n-Heptane)의 자발화 현상 (Simplified Reaction Scheme of Hydrocarbon Fuels and Its Application to Autoignition of n-Heptane)

  • 여진구
    • 한국자동차공학회논문집
    • /
    • 제10권1호
    • /
    • pp.76-83
    • /
    • 2002
  • Mathematically and chemically simplified reaction scheme for n(heptane that simulates autoignitions of the end gases in spark ignition engines has been developed and studied computationally. The five(equation model is described, to predict the essential features of hydrocarbon oxidation. This scheme has been calibrated against autoignition delay times measured in rapid compression machines. The rate constants, activation temperatures, Ta, Arrhenius pre-exponential constants, A, and heats of reaction for stoichiometric nheptane/air has all been optimized. Comparisons between computed and experimental autoignition delay times have validated the present simplified reaction scheme. The influences of heat loss and concentration of chain carrier at the beginning of compression upon autoignition delay times have been computationally investigated.

디젤/1-부탄올 혼합연료 단일액적의 자발화 현상 (Autoignition Phenomena of a Single Diesel/1-Butanol Mixture Droplet)

  • 김혜민
    • 한국분무공학회지
    • /
    • 제23권2호
    • /
    • pp.90-95
    • /
    • 2018
  • The goal of this study is to experimentally observe the autoignition phenomena of a diesel/1-butanol mixture droplet in ambient pressure and $700^{\circ}C$ condition. A volume ratio of 1-butanol in the fuel was set to 25, 50 and 75%. A single droplet was installed at the tip of fine thermocouple, and the electric furnace dropped down to make elevated temperature condition. Droplet behavior during the experiment could be divided into 3 stages including droplet heating, puffing and autoignition/combustion. Puffing process intensively observed for the case of 1-butanol volume ratio of 25 and 50%, but did not occur at 75%. Increase of 1-butanol volume ratio hindered rise of the droplet temperature and delayed ignition. In addition, puffing process also affected on autoignition, so the ignition delay of 1-butanol volume ratio of 50% was became longer than that of 75% case.

Propionic acid와 3-Hexanone 계의 최소자연발화온도의 측정 (Measurement of Autoignition Temperature of Propionic Acid and 3-Hexanone System)

  • 하동명
    • 한국화재소방학회논문지
    • /
    • 제28권4호
    • /
    • pp.44-49
    • /
    • 2014
  • 혼합물의 최소자연발화온도는 가연성액체의 안전한 취급을 위해서 중요한 지표가 된다. 본 연구에서는 ASTM E659 장치를 이용하여 가연성 혼합물인 Propionic acid와 3-Hexanone 계의 최소자연발화온도와 발화지연시간을 측정하였다. 2성분계를 구성하는 순수물질인 Propionic acid와 3-Hexanone 계의 최소자연발화온도는 각 각 $511^{\circ}C$$425^{\circ}C$로 측정되었다. 그리고 측정된 Propionic acid와 3-Hexanone 혼합물의 최소자연발화온도 실험값은 제시된 식에 의한 예측값과 적은 평균절대오차에서 일치하였다. 그리고 Propionic acid와 3-Hexanone 계는 일부 혼합 조성에서 두 개의 순수물질 가운데 작은 AIT 보다 낮게 측정된 AIT를 보이는 최소자연발화온도거동(Minimum Autoignition Temperature Behavior, MAITB)을 보이고 있다.

가연성 이성분계의 최소자연발화온도 거동(MAITB) (Minimum Autoignition Temperature Behavior(MAITB) of the Flammable Binary Systems)

  • 하동명;이성진
    • 한국안전학회지
    • /
    • 제23권6호
    • /
    • pp.70-75
    • /
    • 2008
  • The values of the AIT(Autoignition temperature) for fire and explosion protection are normally the lowest reported. The minimum autoignition temperature behavior(MAITB) of flammable liquid mixtures is exhibited when the AIT of mixture is below the AIT of the individual components. The MAITB is an interesting experimental features, which can be significant from the perspective of industrial safety. In this study, the AITs of m-xylene+n-butyric acid and ethylbenzene+n-butanol systems were measured using ASTM E659-78 apparatus. The AITs of m-xylene, n-butyric acid, ethylbenzene and n-butanol which constituted two binary systems were $587^{\circ}C$, $510^{\circ}C$, $475^{\circ}C$ and $340^{\circ}C$ respectively. The m-xylene+n-butyric acid system is exhibited MAITB at 0.3 mole fraction of m-xylene, and its minimum autoignition temperature was $460^{\circ}C$.

Investigation of Autoignition of Propane and n-Butane Blends Using a Rapid Compression Machine

  • Kim, Hyunguk;Yongseob Lim;Kyoungdoug Min;Lee, Daeyup
    • Journal of Mechanical Science and Technology
    • /
    • 제16권8호
    • /
    • pp.1127-1134
    • /
    • 2002
  • The effects of pressure and temperature on the autoignition of propane and n-butane blends were investigated using a rapid compression machine (RCM) , which is widely used to examine the autoignition characteristics. The RCM was designed to be capable of varying the compression ratio between 5 and 20 and minimize the vortex formation on the cylinder wall using a wedge-shaped crevice. The initial temperature and pressure of the compressed gas were varied in range of 720∼900 K and 1.6∼ 1.8 MPa, respectively, by adjusting the ratio of the specific heat of the mixture by altering the ratio of the non-reactive components (N$_2$, Ar) under a constant effective equivalence ratio (ø$\_$f/= 1.0) The gas temperature after the compression stroke could be obtained from the measured time-pressure record. The results showed a two-stage ignition delay and a Negative Temperature Coefficient (NTC) behavior which were the unique characteristic of the alkane series fuels. As the propane concentration in the blend were increased from 20% and 40% propane, the autoignition delay time increased by approximately 41 % and 55% at 750 K. Numerical reduced kinetic modeling was performed using the Shell model, which introduced some important chemical ideas, represented by the generic species. Several rate coefficients were calibrated based on the experimental results to establish an autoignition model of the propane and n-butane blends. These coefficients can be used to predict the autoignition characteristics in LPG fueled Sl engines.

1-Heptene, 2-Heptene 및 3-Heptene의 발화특성에 관한 연구 (A Study on Autoignition Characteristics of 1-Heptene, 2-Heptene and 3-Heptene.)

  • 최재욱;목연수;김상렬
    • 한국안전학회지
    • /
    • 제5권2호
    • /
    • pp.17-23
    • /
    • 1990
  • This study was performed by experiments with ASTM's apparatus for determination of autoignition temperature to obtain autoignition characteristics of 1-Heptene, 2-Heptene and 3-Heptene, respectively. As results, minimum autoignition temperatures (MAIT) of 1-Heptene, 2-Heptene and 3-Heptene were 246$^{\circ}C$, 248$^{\circ}C$ and 254$^{\circ}C$, respectively and each dropping volume of these temperatures was 0.25$m\ell$, 0.20$m\ell$ and 0.20$m\ell$. Instantaneous ignition temperatures measured at each dropping volume of Heptene were 371$^{\circ}C$, 357$^{\circ}C$ and 342$^{\circ}C$, respectively. Relation ignition delay time with ignition temperature at minimum autoignition temperature agreed well with Semenov's equation, and the values of apparent activation energy from this equation were 47Kca1/mo1 for 1-Heptene, 35Kca1/mo1 for 2-Heptene and 29Kca1/mo1 for 3-Heptene. It was found that the values of apparent activation energy decreased as the position of double bond changed from end to center in C-C chain.

  • PDF

노말프로판올과 아세틱에씨드 계의 최소자연발화온도(AIT) 측정 및 예측 (Measurement and Prediction of Autoignition Temperature(AIT) of n-Propanol and Acetic acid System)

  • 하동명
    • 한국안전학회지
    • /
    • 제32권2호
    • /
    • pp.66-71
    • /
    • 2017
  • The autoignition temperature (AIT) is crucial combustible characteristics which need attention in chemical process that handle hazardous materials. The AIT, also to as minimum spontaneous ignition temperature(MSIT), is the lowest temperature of a hot surface at which the substance will spontaneously ignite without any obvious sources of ignition such as a spark or flame. The AIT may be used as combustion property to specify operating, storage, and materials handling procedures for process safety. This study measured the AITs of n-propanol+acetic acid system from ignition delay time(time lag) by using ASTM E659 apparatus. The AITs of n-propanol and acetic acid which constituted binary system were $435^{\circ}C$ and $212^{\circ}C$, respectively. The experimental AITs of n-propanol+acetic acid system were a good agreement with the calculated AITs by the proposed equations with a few A.A.D.(average absolute deviation). In the case of n-propanol and acetic acid system, the minimum autoignition temperature behavior (MAITB), which is lower than the lower AIT, is shown among the two pure substances constituting the mixture.