• Title/Summary/Keyword: Autofrettage

Search Result 41, Processing Time 0.018 seconds

A Study on the Fatigue Life of Autofrettaged Compound Cylinder (자긴가공된 이중후육실린더의 피로수명에 관한 연구)

  • Lee, Eun-Yup;Lee, Young-Shin;Yang, Qui-Ming;Kim, Jae-Hoon;Cha, Ki-Up;Hong, Suk-Kyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.296-309
    • /
    • 2009
  • Thick-walled cylinder with high pressure have had wide application in the armament industry. In the thick-walled cylinder, fatigue crack is generated at inner radius and developed toward the outer radius. To prevent generation of fatigue crack, the autofrettage process had been used. The compressive residual stress induced by the autofrettage process extends loading pressure and fatigue life of the thick-walled cylinder. In this study, the residual stress of single and compound cylinder by the autofrettage process was evaluated. The analytical compressive residual stress of single cylinder was good agreement with experimental result at inner radius. The analysis on the residual stress of compound cylinder was conducted. The compressive residual stress at inner radius was increased with the overstrain level. And fatigue life of the compound cylinder with initial crack was evaluated. The considered initial crack shape was straight and semi-elliptical. The fatigue life was extended with the overstrain level. The fatigue life of the compound cylinder with semi-elliptical crack was longer than straight crack. The suitable way to extend fatigue life of the compound cylinder was proposed.

Evaluation of APR1400 Steam Generator Tube-to-Tubesheet Contact Area Residual Stresses

  • KIPTISIA, Wycliffe Kiprotich;NAMGUNG, Ihn
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.15 no.1
    • /
    • pp.18-27
    • /
    • 2019
  • The Advanced Power Reactor 1400 (APR1400) Steam Generator (SG) uses alloy 690 as a tube material and SA-508 Grade 3 Class 1 as a tubesheet material to form tube-to-tubesheet joint through hydraulic expansion process. In this paper, the residual stresses in the SG tube-to-tubesheet contact area was investigated by applying Model-Based System Engineering (MBSE) methodology and the V-model. The use of MBSE transform system description into diagrams which clearly describe the logical interaction between functions hence minimizes the risk of ambiguity. A theoretical and Finite Element Methodology (FEM) was used to assess and compare the residual stresses in the tube-to-tubesheet contact area. Additionally, the axial strength of the tube to tubesheet joint based on the pull-out force against the contact joint force was evaluated and recommended optimum autofrettage pressure to minimize residual stresses in the transition zone given. A single U-tube hole and tubesheet with ligament thickness was taken as a single cylinder and plane strain condition was assumed. An iterative method was used in FEM simulation to find the limit autofrettage pressure at which pull-out force and contact force are of the same magnitude. The joint contact force was estimated to be 20 times more than the pull-out force and the limit autofrettage pressure was estimated to be 141.85MPa.

Fatigue crack propagation life evaluation of an autofrettaged thick-walled cylinder (자긴가공된 두꺼운 실린더의 피로균열 전파수명평가)

  • Lee, Song-In;Kim, Jin-Yong;Jeong, Se-Hui;Go, Seung-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.321-329
    • /
    • 1998
  • To ensure the structural integrity of the autofrettaged thick-walled cylinder subjected to cyclic internal pressure loading, the fatigue crack propagation life of the cylinder was evaluated. Stress intensity factors of the external cracked cylinder due to internal pressure and autofrettage loadings were calculated using the finite element method. The fatigue crack propagation lives of the cylinder based on the fracture mechanics concepts were predicted and compared to the experimental fatigue lives evaluated from the C-shaped simulation specimens. There were good correlations between the predicted and experimental fatigue lives within a factor of 3 for the single and double grooved C-shaped simulation specimens. Predicted fatigue crack propagation lives of the double grooved cylinders were about 1.5-5 times longer than those of the single grooved cylinders depending on the levels of autofrettage.

Cycling life prediction method of the filament-wound composite cylinders with metal liner (Type 3 복합재 압력용기의 반복수명 예측 방법에 대한 연구)

  • Park, Ji-Sang;Chung, Sang-Su;Chung, Jae-Han
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.45-48
    • /
    • 2005
  • In manufacturing process of composite cylinders with metal liner, the autofrettage process which induces compressive residual stress on liner to improve cycling life can be applied. In this study, finite element analysis technique is presented, which can predict accurately the compressive residual stress on liner induced by autofrettage and stress behavior after. Material and geometry non-linearity is considered in finite element analysis, and the Von-Mises stress of a liner is introduced as a key parameter that determines pressure cycling life of composite cylinders. Presented methodology is verified through fatigue test of liner material and pressure cycling test of composite cylinders.

  • PDF

Analysis of an Autofrettage Effect to Improve Fatigue Life of the Automotive CNG Storage Vessel (자동차용 압축천연가스 저장용기의 피로수명향상을 위한 자긴처리 효과 분석)

  • Kim, H.Y.;Hwang, B.C.;Bae, W.B.;Han, S.M.;Kim, C.
    • Transactions of Materials Processing
    • /
    • v.17 no.4
    • /
    • pp.292-301
    • /
    • 2008
  • Type 2 compressed natural gas(CNG) storage vessels for automobiles are becoming widely used. They are not only supplied to automakers in Korea, such as Hyundai Motors, but increasingly, they are being exported overseas. Autofrettage is a process that produces beneficial residual stresses in a vessel by subjecting it to excessive internal pressure. This strengthens the vessel and improves its fatigue resistance. This paper presents research investigating the autoftettage process and residual stresses it produces in type 2 CNG storage vessels. A finite element analysis technique and a closed form equation are used. Then, fatigue resistance is analyzed through a fatigue evaluation performed according to ASME section VIII.

A Study on the Residual Stress Evaluation of Autofrettaged SCM440 High Strength Steel (자긴가공된 SCM440 고강도강의 잔류응력평가에 관한 연구)

  • Kim, Jae-Hoon;Shim, Woo-Sung;Yoon, Young-Kwen;Lee, Young-Shin;Cha, Ki-Up;Hong, Suck-Kyun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.4
    • /
    • pp.39-45
    • /
    • 2010
  • Thick-walled cylinders, such as a cannon or nuclear reactor, are autofrettaged to induce advantageous residual stresses into pressure vessels and to increase operating pressure and the fatigue lifetimes. As the autofrettage level increases, the magnitude of compressive residual stress at the bore also increases. The purpose of the present paper is to predict the accurate residual stress of SCM440 high strength steel using the Kendall model which was adopted by ASME Code. Hydraulic pressure process was applied in the inner part and thick-walled cylinders were autofrettaged up to 30% overstrain levels. Electro polishing on the surface of autofrettage specimen was performed to get more accurate residual stress. Residual stresses were measured by X-ray diffraction method. The autofrettage surface which was plastically deformed analyzed using a scanning electron microscope(SEM). Although there were some differences in measured residual stress and numerical results, it has a tendency to agree comparatively with each other.

A Study on Residual Stress Analysis of Autofrettaged Thick-walled Cylinders (자긴가공된 후육실린더의 잔류응력 해석에 관한 연구)

  • Kim, Jae-Hoon;Shim, Woo-Sung;Lee, Young-Shin;Cha, Ki-Up;Hong, Suck-Kyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.12
    • /
    • pp.110-116
    • /
    • 2009
  • Thick-walled cylinders, such as a cannon or nuclear reactor, are autofrettaged to induce advantageous residual stresses into pressure vessels and to increase operating pressure and the fatigue lifetimes. As the autofrettage level increases, the magnitude of compressive residual stress at the bore also increases. However, the Bauschinger effect reduces the compressive residual stresses as a result of prior tensile plastic strain, and decreases the beneficial autofrettage effect. The purpose of the present paper is to predict the accurate residual stress of SNCM8 high strength steel using the Kendall model which was adopted by ASME Code. The uniaxial Bauschinger effect test was performed to decide BEF, then this constant was used in calculation. There were some differences between theoretical solution and modified solution.

A Study on Improving Fatigue Life for Composite Cylinder with Seamless Integrated Liner (이음매 없는 일체형 라이너를 갖는 복합재 압력용기의 피로수명 향상에 대한 연구)

  • Kim, Hyo-Joon
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.6
    • /
    • pp.46-51
    • /
    • 2013
  • Composite cylinder is used by hydrogen fuel cell vehicles and natural gas vehicles because of high specific modulus, specific strength and fatigue resistance. composite cylinder has a seamless integrated liner and it is fully overwrapped with structural fibers of high strength carbon fibers in an epoxy matrix. In this study, filament winding pattern and autofrettage pressure design technique are presented considering structural weakness of knuckle and compressive residual stress. Presented methodology is verified by pressure cycling test of composite cylinders.

DIMENSIONAL CHANGES AND REDISTRIBUTION OF RESID¬UAL STRESSES DUE TO INNER LAYER REMOVAL OF RESID¬UALLY STRESSED CYLINDRICAL COMPONENTS (잔류응력이 내재하는 원통형 부품의 내면 가공에 따른 치수 변화와 잔류 응력의 재분포)

  • S.H.Shin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.522-526
    • /
    • 1997
  • 잔류 응력이 존재하는 부품의 가공 시에는 잔류 응력 상태가 새로운 평형 상태를 이루기 위해 재 분포되며 이는 가공 자체에 따른 변형 이와의 부가적 변형을 초래한다. 고도의 정밀도를 요하는 가공에는 이러한 잔류 응력에 의한 부가적 변형을 고려하여야 하며, 가공 후의 잔류 응력의 재 분포 상태는 가공 후 부품의 물질적 성능을 결정하는데 중요한 요소이므로 이를 예측할 수 있어야 한다. 본 연구에서는 잔류 응력에 의한 부가적 치수 변화를 고려한 가공 후의 부품의 내경 및 두께와 잔류 응력의 재 분포를 예측할 수 있는 이론적 수식을 제시하고 유한요소법에 의한 시뮬레이션의 결과와 비교하였다. 초기 잔류 응력의 분포는 autofrettage process에 의해 유도되었다.

  • PDF

The Overstrain of Thick-Walled Cylinders Considering the Bauschinger Effect Facto. (BEF)

  • Ghorbanpour, A.;Loghman, A.;Khademizadeh, H.;Moradi, M.
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.477-483
    • /
    • 2003
  • An independent kinematic hardening material model in which the reverse yielding point is defined by the Bauschinger effect factor (BEF) , has been defined for stainless steel SUS 304. The material model and the BEF are obtained experimentally and represented mathematically as continuous functions of effective plastic strain. The material model has been incorporated in a non-linear stress analysis for the prediction of reverse yielding in thick-walled cylinders during the autofrettage process of these vessels. Residual stress distributions of the independent kinematic hardening material model at the onset of reverse yielding are compared with residual stresses of an isotropic hardening model showing the significant effect of the BEF on reverse yielding predictions. Critical pressures of direct and reverse yielding are obtained for the most commonly used cylinders and a range of permissible internal pressures for an efficient autofrettaged process is recommended.