• Title/Summary/Keyword: Autocorrelated Residuals

Search Result 15, Processing Time 0.023 seconds

A Modified Diffusion Model Considering Autocorrelated Disturbances: Applications on CT Scanners and FPD TVs (자기상관 오차항을 고려한 수정된 확산모형: CT-스캐너와 FPD TV에의 응용)

  • Cha, Kyoung Cheon;Kim, Sang-Hoon
    • Asia Marketing Journal
    • /
    • v.11 no.1
    • /
    • pp.29-38
    • /
    • 2009
  • Estimating the Bass diffusion model often creates a time-interval bias, which leads the OLS approach to overestimate sales at early stages and underestimate sales after the peak. Further, a specification error from omitted variables might raise serial correlations among residuals when marketing actions are not incorporated into the diffusion model. Autocorrelated disturbances may yield unbiased but inefficient estimation, and therefore invalid inference results. This phenomenon warrants a modified approach to estimating the Bass diffusion model. In this paper, the authors propose a modified Bass diffusion model handling autocorrelated disturbances. To validate the new approach, authors applied the method on two different data-sets: CT Scanners in the U.S, and FPD TV sales in Korea. The results showed improved model fit and the validity of the proposed model.

  • PDF

Robust CUSUM chart for Autocorrelated Process (자기상관을 갖는 공정의 로버스트 누적합관리도)

  • 이정형;전태윤;조신섭
    • Journal of Korean Society for Quality Management
    • /
    • v.27 no.4
    • /
    • pp.123-142
    • /
    • 1999
  • Conventional SPC assumes that observations are independent. Often in industrial practice, however, observations are not independent. A common approach to building control charts for autocorrelated data is to apply conventional SPC to the residuals from a time series model of the process or is to apply conventional SPC to the weighted or unweighted subgroup means. In this paper, we propose a robust CUSUM control scheme for the detection of level change, without model identification or subgrouping of autocorrelated data. The proposed CUSUM chart and other conventional control charts are compared by a Monte Carlo simulation. It is shown that the proposed CUSUM chart is more effective than conventional CUSUM chart when the process is autocorrelated.

  • PDF

Effects of Parameter Estimation in Phase I on Phase II Control Limits for Monitoring Autocorrelated Data (자기상관 데이터 모니터링에서 일단계 모수 추정이 이단계 관리한계선에 미치는 영향 연구)

  • Lee, Sungim
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.5
    • /
    • pp.1025-1034
    • /
    • 2015
  • Traditional Shewhart control charts assume that the observations are independent over time. Current progress in measurement and data collection technology lead to the presence of autocorrelated process data that may affect poor performance in statistical process control. One of the most popular charts for autocorrelated data is to model a correlative structure with an appropriate time series model and apply control chart to the sequence of residuals. Model parameters are estimated by an in-control Phase I reference sample since they are usually unknown in practice. This paper deals with the effects of parameter estimation on Phase II control limits to monitor autocorrelated data.

Residual-based Robust CUSUM Control Charts for Autocorrelated Processes (자기상관 공정 적용을 위한 잔차 기반 강건 누적합 관리도)

  • Lee, Hyun-Cheol
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.3
    • /
    • pp.52-61
    • /
    • 2012
  • The design method for cumulative sum (CUSUM) control charts, which can be robust to autoregressive moving average (ARMA) modeling errors, has not been frequently proposed so far. This is because the CUSUM statistic involves a maximum function, which is intractable in mathematical derivations, and thus any modification on the statistic can not be favorably made. We propose residual-based robust CUSUM control charts for monitoring autocorrelated processes. In order to incorporate the effects of ARMA modeling errors into the design method, we modify parameters (reference value and decision interval) of CUSUM control charts using the approximate expected variance of residuals generated in model uncertainty, rather than directly modify the form of the CUSUM statistic. The expected variance of residuals is derived using a second-order Taylor approximation and the general form is represented using the order of ARMA models with the sample size for ARMA modeling. Based on the Monte carlo simulation, we demonstrate that the proposed method can be effectively used for statistical process control (SPC) charts, which are robust to ARMA modeling errors.

Estimation of the Change Point in Monitoring the Mean of Autocorrelated Processes

  • Lee, Jae-Heon;Han, Jung-Hee;Jung, Sang-Hyun
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.1
    • /
    • pp.155-167
    • /
    • 2007
  • Knowing the time of the process change could lead to quicker identification of the responsible special cause and less process down time, and it could help to reduce the probability of incorrectly identifying the special cause. In this paper, we propose the maximum likelihood estimator (MLE) for the process change point when a control chart is used in monitoring the mean of a process in which the observations can be modeled as an AR(1) process plus an additional random error. The performance of the proposed MLE is compared to the performance of the built-in estimator when they are used in EWMA charts based on the residuals. The results show that the proposed MLE provides good performance in terms of both accuracy and precision of the estimator.

A note on CUSUM design for autocorrelated processes (자기상관 공정에 대한 누적합관리도에서 설계모수 값의 결정)

  • Lee, Jae-June;Lee, Jong-Seon
    • Journal of Korean Society for Quality Management
    • /
    • v.36 no.4
    • /
    • pp.87-92
    • /
    • 2008
  • It is common to use CUSUM charts for detecting small level shifts in processes control, in which reference value(k) and decision interval(h) are the design parameters to be determined. To control process with autocorrelation, CUSUM charts could be applied to residuals obtained from fitting ARIMA models. However, constant level shifts in processes lead to varying mean shifts in residual processes and thus standard CUSUM charts may need to be modified. In this paper, we study the performance of CUSUM charts with various design parameters applied to autocorrelated processes, especially focussing on ARMA(1,1) models, and propose how they can be determined to get better performance in terms of the average run length.

Sensitivity Analysis of Control Charts with Autocorrelated Data (자기상관자료를 갖는 관리도의 민감도 분석)

  • 조영찬;송서일
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.22 no.51
    • /
    • pp.1-10
    • /
    • 1999
  • In recent industry society, it is revealed that, as an increase in the use of automated manufacturing and process inspection technology, the data from mass production system exhibits some degrees of autocorrelation. The operation characteristics of traditional control charts developed under the independence assumption are adversely affected by the presence of serial correlation. Therefore, when autocorrelated construction contacted with time-series models explain, the time-series models are the Box-Jenkins forecast models which have been proposed as the best forecasting tool which allows for partitioning of variation into result from the autocorrelation structure and variation due to unusual but assignable causes. In this paper, for the AR(1) process of Box-Jenkins forecast models, when the constant term ξ are zero and different from zero, I want to analyze the sensitivity of (equation omitted), CUSUM and EWMA control chart for forecast residuals.

  • PDF

Procedure for monitoring autocorrelated processes using LSTM Autoencoder (LSTM Autoencoder를 이용한 자기상관 공정의 모니터링 절차)

  • Pyoungjin Ji;Jaeheon Lee
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.2
    • /
    • pp.191-207
    • /
    • 2024
  • Many studies have been conducted to quickly detect out-of-control situations in autocorrelated processes. The most traditionally used method is a residual control chart, which uses residuals calculated from a fitted time series model. However, many procedures for monitoring autocorrelated processes using statistical learning methods have recently been proposed. In this paper, we propose a monitoring procedure using the latent vector of LSTM Autoencoder, a deep learning-based unsupervised learning method. We compare the performance of this procedure with the LSTM Autoencoder procedure based on the reconstruction error, the RNN classification procedure, and the residual charting procedure through simulation studies. Simulation results show that the performance of the proposed procedure and the RNN classification procedure are similar, but the proposed procedure has the advantage of being useful in processes where sufficient out-of-control data cannot be obtained, because it does not require out-of-control data for training.

A Statistical Control Chart for Process with Correlated Subgroups

  • Lee, Kwang-Ho
    • Communications for Statistical Applications and Methods
    • /
    • v.5 no.2
    • /
    • pp.373-381
    • /
    • 1998
  • In this paper a new control chart which accounts for correlation between process subgroups will be proposed. We consider the case where the process fluctuations are autocorrelated by a stationary AR(1) time series and where n($\geq1$) items are sampled from the process at each sampling time. A simulation study is presented and shows that for correlated subgroups, the proposed control chart makes a significant improvement over the traditionally employed X-bar chart which ignores subgroup correlations. Finally, we illustrate the proposed chart by comparing the standardized residuals and X-bar chart on a data set of motor shaft diameters.

  • PDF

Least Squares Estimation with Autocorrelated Residuals : A Survey

  • Rhee, Hak-Yong
    • Journal of the Korean Statistical Society
    • /
    • v.4 no.1
    • /
    • pp.39-56
    • /
    • 1975
  • Ever since Gauss discussed the least-squares method in 1812 and Bertrand translated Gauss's work in French, the least-squares method has been used for various economic analysis. The justification of the least-squares method was given by Markov in 1912 in connection with the previous discussion by Gauss and Bertrand. The main argument concerned the problem of obtaining the best linear unbiased estimates. In some modern language, the argument can be explained as follow.

  • PDF