• Title/Summary/Keyword: Autoclave process

Search Result 118, Processing Time 0.032 seconds

The Mechanical Properties of Alkali Resistance Glass Fiber Reinforced Cement under Different Curing Conditions

  • Jeong, Moon-Young;Song, Jong-Taek
    • The Korean Journal of Ceramics
    • /
    • v.4 no.3
    • /
    • pp.189-192
    • /
    • 1998
  • The mechanical properties of alkali resistance (AR) glass fiber reinforced cement(GFRC) under different curing conditions were investigated in this study. The specimens were formed by extrusion process, and then steam cured and autoclaved. An autoclaved specimen showed the elastic-brittle behavior up to 4% of fiber volume fraction. However, it was found that the fracture behavior for cured specimen was changed to the elastic-plastic with crack branches fracture at greater than 3 vol.% of fiber.

  • PDF

Experimental Study on the Properties of Solid Material Made by Autoclave Curing according to CaO/SiO2 Ratio and W/B (CaO/SiO2비 및 W/B 변화에 따른 오토클레이브 양생 경화체의 특성에 관한 실험적 연구)

  • Kang, Cheol;Kang, Ki-Woong;Kim, Jin-Man
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.5
    • /
    • pp.557-563
    • /
    • 2009
  • This study is on the properties of inorganic porous calcium silicate material made from silica powder through the autoclaving curing, the results of this study should be utilized fundamental data for the development of noise reduction porous solid material using siliceous byproduct generated by various manufacture process. For the manufacture of autoclave curing specimen, various calcareous materials used and siliceous materials used silica powder. In this study, properties in density and compressive strength according to the change of W/B and C/S ratio, microscopy for the shape of pore, SEM and XRD for the examination of hydrate after autoclave curing are carried out respectively. The test results shown that the more slurry density decrease, the more W/B increase at the fresh state, this tendency shown similar to in hardened state. Among the specimens of C/S ratio, the compressive strength of C/S ratio of 0.85 gave the highest the compressive strength. In the results of XRD, tobermorite generated by autoclaving curing was created all of specimens regardless of C/S ratio. To ascertain pore structure, we compared with existing porous calcium silicate product(ALC, organic sound absorbing porous material). The results of microscope observation, pore structure of specimen of this study was similar to that of existing inorganic sound absorbing foam concrete. therefore, we could conformed a possibility of sound absorbing porous solid material on the basis of the results.

A Study on Property of Thermoset Composite in FPS Process (FPS 공정에 의한 열경화성 복합재 유효성 검증 연구)

  • Kim J-H;Um M-K;Byun J-H;Lee S-K;Jeon Y-J
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.241-245
    • /
    • 2004
  • Among the various manufacturing processes of composites, the tape lay-up process of thermoset prepreg has many advantages compared to autoclave or hot press forming. It has a high potential to process automation and continuous fabrication .. Fiber placement developed as a logical combination of filament winding and automated tape placement to overcome some of the limitations of each manufacturing method. Fiber placement uses a compaction device to apply direct contact between the incoming materials in the fiber placement head and Heat is added to the materials at the nip point of the compaction roller. This paper will discuss property of thermoset composite as compaction and heat effect in Automated fiber placement

  • PDF

Evaluation of manufacturing process and structural strength for the composites carbody (신소재 복합재 철도차량 차체 제작기술 및 구조강도 평가)

  • Jeong Jong-Cheol;Lee Sang-Jin;Cho Sea-Hyun;Seo Sung-Il;Kim Chun-Gon
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.403-408
    • /
    • 2005
  • This research presents the manufacturing process and the structural strength assessment for the hybrid composite carbody. In this study, the manufacturing process for carbody with length of 23m was explained. The composite carbody was fabricated as one body using autoclave with length of 30m and 5m diameter. The structural behavior of the carbody under the 3-point supporting and the natural frequency were evaluated as well. In addition, the test results were compared with the numerical one. From the tests, the structural strength of the hybrid composite carbody was assessed.

  • PDF

Optimization of Synthesis Process for Zeolite 4A Using Statistical Experimental Design (통계적 실험계획법을 이용한 제올라이트 4A 합성 최적화)

  • Yun, Mi Hee;Yoo, Kye Sang
    • Applied Chemistry for Engineering
    • /
    • v.28 no.3
    • /
    • pp.286-289
    • /
    • 2017
  • Synthesis of zeolite 4A was carried out to optimize the nanoparticle synthesis process using statistical experimental design method. The zeolite 4A was synthesized by controlling the concentration of the silicon precursor, sodium metasilicate (SMS), and characterized by XRD, SEM and nitrogen adsorption. In particular, the property of zeolite 4A can be determined by XRD analysis. Using the general factor analysis in the design of experiments, we analyzed main effects and interactions according to the reactor, reaction temperature and reaction time. The optimum reaction condition for the synthesis of zeolite 4A crystallinity was using an autoclave for 3 hours at $110^{\circ}C$. Furthermore, the optimal synthesis conditions of zeolite 4A with various crystallinity using Ludox as a silicon precursor were presented of what using both the surface and contour plot.

Development of Resin Film Infusion Carbon Composite Structure for UAV (수지필름 인퓨전 탄소섬유 복합재료를 적용한 무인항공기용 구조체 개발)

  • Choi, Jaehuyng;Kim, Soo-Hyun;Bang, Hyung-Joon;Kim, Kook-Jin
    • Composites Research
    • /
    • v.32 no.1
    • /
    • pp.45-49
    • /
    • 2019
  • Fiber reinforced composites fabricated by the resin film infusion (RFI) process, which is one of the outof-autoclave process, have the advantage of significantly reducing the processing cost in large structures while having excellent mechanical properties and uniform impregnation of the resin. In this study, we applied RFI carbon fiber composites to unmanned aerial vehicle structures to improve structural safety and achieve weight reduction. The tensile test results showed that the strength was 46% higher than that of generic T300 grade plain weave carbon fiber composites. As a result of the layup design and finite element analysis of the composite wing structure using the above material properties, the wing tip deflection is decreased by 31%, the structural safety factor is increased by 28% and the weight of the entire structure can be reduced by more than 10% compared to the reference model using glass fiber composite material.

A Study on the Evaluation of the properties change of Aircraft Composites Parts During Repair by Thermal Analysis Test (열분석시험을 통한 항공기 복합재료 부품의 수리 시 반복경화에 따른 물성변화 측정에 관한 연구)

  • 엄수현;이상언;한중원;김국진;김영식;김윤해
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.33-37
    • /
    • 2002
  • Recently, composites have been widely applied in the sporting goods, automobile, aerospace industry. As the use of advanced composites increase, specific techniques have been developed to repair damaged composite structures. In order to repair the damaged part, it is required that the material in the damaged area be removed first by utilizing the proper method, and prepreg be laid up in the area and cured under vacuum using the vacuum bagging materials. In curing process, either in an oven or autoclave is to be delamination can be occurred in the sound areas during and/or after the exposure to the elevated curing temperature in case that the repair process is repeated. Therefore, this study was conducted to evaluate the degree of degradation of properties of the cured parts and how it affects to the delamination phenomenon between laminated skin and honeycomb core.

  • PDF

Thermal Deformation of Carbon Fiber Reinforced Composite by Cure Shrinkage (탄소섬유강화 복합재료 성형시 화학수축에 의한 변형연구)

  • Choi, Eun-Seong;Kim, Wie-Dae
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.404-411
    • /
    • 2018
  • As the autoclave process progresses in a given cure cycle, residual stress in the composite product is induced by cure shrinkage of the resin. As a result, It generates the thermal deformation such as spring-in and warpage, and the inaccuracy of the final product increases. It is important to predict thermal deformation in aerospace parts which require precise fabrication. The research has been done on predicting and grasping curing process of composite material. In this study, the cure mechanism of composite materials according to the process is predicted through finite element analysis, and the effect of cure shrinkage on thermal deformation generated by the process is analyzed.

Changes in color stability and antioxidant properties of dietary pigments after thermal processing at high pressures (고온가압 처리에 의한 식용색소의 화학안정성 및 산화방지활성 변화)

  • Oh, Boeun;Kim, Kunhee;Hong, Jungil
    • Korean Journal of Food Science and Technology
    • /
    • v.54 no.3
    • /
    • pp.257-263
    • /
    • 2022
  • Various dietary pigments are added to processed foods to improve their sensory and commercial properties. In this study, autoclave sterilization (121℃ for 15 min at 15 psi) was performed on 34 food pigments, and changes in their color stability and antioxidant activity were analyzed. The autoclaving process drastically reduced the peak color intensities of water-soluble paprika and beet red (BR) by ~90%. Turmeric oleoresin (TO), water-soluble β-carotene, and grape skin color were also unstable and showed a remaining color intensity of 45-60%. The colors of all the synthetic pigments tested were stable under this process. The scavenging activities of BR and paprika against ABTS, DPPH, and AAPH radicals decreased significantly, whereas those of TO were enhanced after the autoclaving treatment. The results suggest that the chemical and bioactive properties of certain dietary pigments are affected by the autoclaving process, and this phenomenon should be considered during food processing.

Characteristics of the Cyclic Hardening in Low Cycle Environmental Fatigue Test of CF8M Stainless Steel (CF8M 스테인리스 강 저주기 환경피로 실험의 주기적 변형률 경화 특성)

  • Jeong, Ill-Seok;Ha, Gak-Hyun;Kim, Tae-Ryong;Jeon, Hyun-Ik;Kim, Yeong-Sin
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.17-22
    • /
    • 2007
  • Low-cycle environmental fatigue tests of cast austenitic stainless steel CF8M at the condition of fatigue strain rate 0.04%/sec were conducted at the pressure and temperature, 15MPa, $315^{\circ}C$ of a operating pressurized water reactor. The used test rig was limited to install an extensometer at the gauge length of the cylindrical fatigue specimen inside the small autoclave. So the magnet type LVDT's were used to measure the fatigue displacement at the specimen shoulders inside the high temperature and high pressure water autoclave. However, the displacement and strain measured at the specimen shoulders is different from the one at the gauge length for the geometry and the cyclic strain hardening effect. FEM calculated the displacement and the strain of the gauge length from the data measured at the shoulders. Tensile test properties in elastic and plastic behavior of CF8M material were used in the FEM analysis. A series of low cycle fatigue tests simulating the cyclic strain hardening effect verified that the FEM calculation was well agreed with the simulated tests. The process and method developed in this study would be so useful to produce reliable environmental fatigue curves of CF8M stainless steel in pressurized water reactors.

  • PDF