• Title/Summary/Keyword: Auto-regressive

Search Result 249, Processing Time 0.032 seconds

Accurate State of Charge Estimation of LiFePO4 Battery Based on the Unscented Kalman Filter and the Particle Filter (언센티드 칼만 필터와 파티클 필터에 기반한 리튬 인산철 배터리의 정확한 충전 상태 추정)

  • Nguyen, Thanh-Tung;Awan, Mudassir Ibrahim;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.126-127
    • /
    • 2017
  • An accurate State Of Charge (SOC) estimation of battery is the most important technique for Electric Vehicles (EVs) and Energy Storage Systems (ESSs). In this paper a new integrated Unscented Kalman Filter-Particle Filter (UKF-PF) is employed to estimate the SOC of a $LiFePO_4$ battery cell and a significant improvement is obtained as compared to the other methods. The parameters of the battery is modeled by the second order Auto Regressive eXogenous (ARX) model and estimated by using Recursive Least Square (RLS) method to calculate value of each element in the model. The proposed algorithm is established by combining a parameter identification technique using RLS method with ARX model and an SOC estimation technique using UKF-PF.

  • PDF

SOC/SOH Estimation Method for AGM Battery by Combining ARX Model for Online Parameters Identification and DEKF Considering Hysteresis and Diffusion Effects (파라미터 식별을 위한 ARX 모델과 히스테리시스와 확산 효과를 고려한 이중 확장 칼만필터의 결합에 의한 AGM 배터리의 SOC/SOH 추정방법)

  • Tran, Ngoc-Tham;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.401-402
    • /
    • 2014
  • State of Charge (SOC) and State of Health (SOH) are the key issues for the application of Absorbent Glass Mat (AGM) type battery in Idle Start Stop (ISS) system which is popularly integrated in Electric Vehicles (EVs). However, battery parameters strongly depend on SOC, current rate and temperature and significantly change over the battery life cycles. In this research, a novel method for SOC, SOH estimation which combines the Auto Regressive with external input (ARX) method using for online parameters prediction and Dual Extended Kalman Filter (DEKF) algorithm considering hysteresis is proposed. The validity of the proposed algorithm is verified by the simulation and experiments.

  • PDF

A Training Pattern Processing Processing Method for ATM Connection Admission Control Using the Neural Network (ATM 연결 수락 제어를 위한 인공 신경망의 학습패턴 처리기법)

  • 김용남;권오준;김태석
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.05b
    • /
    • pp.109-113
    • /
    • 2003
  • 기존의 VOB(Virtual Output Buffer) 모델에서 신경회로망의 학습 패턴 처리를 위해 가상 셀 손실율이 도입되었다. VOB 모델은 신경망이 실제 셀 손실율 없이도 연결 수락 경계를 잘 찾을 수 있음을 보여주었다. 그러나 VOB 모델은 셀 손실율을 과다 평가하는 경향이 있어 결과적으로 망 자원의 이용률이 낮은 단점이 있다. 된 논문에서는 이러한 단점을 보완하는 방법으로 연결 수락 경계에서 셀 손실율의 평균에 대한 정보를 충분히 포함하는 셀 손실율 참조 곡선의 개념을 제안하였다 그리고 제안된 셀 손실을 참조 곡선을 이용하여 가상 셀 손실율을 처리하는 방법을 제안하였다. 제안된 학습 패턴 처리 방법은 ATM 트래픽 중에 가장 대표적인 두 가지 호원에 대하여 실험하였다. 실험에 사용된 호원은 LAN 데이터의 트래픽 특성을 가지는 On-Off 트래픽과 비디오 화상 통신의 특성을 가지는 Auto-Regressive 트래픽이다.

  • PDF

A novel OCV Hysteresis Modeling for SOC estimation of Lithium Iron Phosphate battery (리튬인산철 배터리를 위한 새로운 히스테리시스 모델링)

  • Nguyen, Thanh Tung;Khan, Abdul Basit;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2016.11a
    • /
    • pp.75-76
    • /
    • 2016
  • The relationship of widely used Open circuit Voltage (OCV) versus State of Charge (SOC) is critical for any reliable SOC estimation technique. However, the hysteresis existing in all type of battery which has been come to the market leads this relationship to a complicated one, especially in Lithium Iron Phosphate (LiFePO4) battery. An accurate model for hysteresis phenomenon is essential for a reliable SOC identification. This paper aims to investigate and propose a method for hysteresis modeling. The SOC estimation is done by using Extended Kalman Filter (EKF), the parameter of the battery is modeled by Auto Regressive Exogenous (ARX) and estimated by using Recursive Least Square (RLS) filter to tract each element of the parameter of the model.

  • PDF

A DC-Offset Elimination Algorithm Based on an AR Model (AR모델을 이용한 직류 옵셋 성분 제거 알고리즘)

  • Chang Soo Young;Lee Dong Gyu;Kang Sang Hee
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.289-291
    • /
    • 2004
  • ln this paper, A dc-offset elimination novel algorithm based on an An model is proposed. The algorithm can eliminate dc-offset rapidly than other algorithms. The signal of fault current can be presented as a linear equation combined sinusoidal with exponential signals. Then, the linear equation can be presented an auto-regressive(AR) model and do-offset can be calculated by the equation of AR model. So it is possible to be removed the dc-offset from the original current signal. Performance evaluation of the algorithm was tested on condition that A-phase ground fault on 154kV 25km overhead transmission line.

  • PDF

Damage assessment of shear-type structures under varying mass effects

  • Do, Ngoan T.;Mei, Qipei;Gul, Mustafa
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.3
    • /
    • pp.237-254
    • /
    • 2019
  • This paper presents an improved time series based damage detection approach with experimental verifications for detection, localization, and quantification of damage in shear-type structures under varying mass effects using output-only vibration data. The proposed method can be very effective for automated monitoring of buildings to develop proactive maintenance strategies. In this method, Auto-Regressive Moving Average models with eXogenous inputs (ARMAX) are built to represent the dynamic relationship of different sensor clusters. The damage features are extracted based on the relative difference of the ARMAX model coefficients to identify the existence, location and severity of damage of stiffness and mass separately. The results from a laboratory-scale shear type structure show that different damage scenarios are revealed successfully using the approach. At the end of this paper, the methodology limitations are also discussed, especially when simultaneous occurrence of mass and stiffness damage at multiple locations.

Systematic Risk Analysis on Bitcoin Using GARCH Model (GARCH 모형을 활용한 비트코인에 대한 체계적 위험분석)

  • Lee, Jung Mann
    • Journal of Information Technology Applications and Management
    • /
    • v.25 no.4
    • /
    • pp.157-169
    • /
    • 2018
  • The purpose of this study was to examine the volatility of bitcoin, diagnose if bitcoin are a systematic risk asset, and evaluate their effectiveness by estimating market beta representing systematic risk using GARCH (Generalized Auto Regressive Conditional Heteroskedastieity) model. First, the empirical results showed that the market beta of Bitcoin using the OLS model was estimated at 0.7745. Second, using GARCH (1, 2) model, the market beta of Bitcoin was estimated to be significant, and the effects of ARCH and GARCH were found to be significant over time, resulting in conditional volatility. Third, the estimated market beta of the GARCH (1, 2), AR (1)-GARCH (1), and MA (1)-GARCH (1, 2) models were also less than 1 at 0.8819, 0.8835, and 0.8775 respectively, showing that there is no systematic risk. Finally, in terms of efficiency, GARCH model was more efficient because the standard error of a market beta was less than that of the OLS model. Among the GARCH models, the MA (1)-GARCH (1, 2) model considering non-simultaneous transactions was estimated to be the most appropriate model.

Modeling Exponential Growth in Population using Logistic, Gompertz and ARIMA Model: An Application on New Cases of COVID-19 in Pakistan

  • Omar, Zara;Tareen, Ahsan
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.1
    • /
    • pp.192-200
    • /
    • 2021
  • In the mid of the December 2019, the virus has been started to spread from China namely Corona virus. It causes fatalities globally and WHO has been declared as pandemic in the whole world. There are different methods which can fit such types of values which obtain peak and get flattened by the time. The main aim of the paper is to find the best or nearly appropriate modeling of such data. The three different models has been deployed for the fitting of the data of Coronavirus confirmed patients in Pakistan till the date of 20th November 2020. In this paper, we have conducted analysis based on data obtained from National Institute of Health (NIH) Islamabad and produced a forecast of COVID-19 confirmed cases as well as the number of deaths and recoveries in Pakistan using the Logistic model, Gompertz model and Auto-Regressive Integrated Moving Average Model (ARIMA) model. The fitted models revealed high exponential growth in the number of confirmed cases, deaths and recoveries in Pakistan.

On the development of data-based damage diagnosis algorithms for structural health monitoring

  • Kiremidjian, Anne S.
    • Smart Structures and Systems
    • /
    • v.30 no.3
    • /
    • pp.263-271
    • /
    • 2022
  • In this paper we present an overview of damage diagnosis algorithms that have been developed over the past two decades using vibration signals obtained from structures. Then, the paper focuses primarily on algorithms that can be used following an extreme event such as a large earthquake to identify structural damage for responding in a timely manner. The algorithms presented in the paper use measurements obtained from accelerometers and gyroscope to identify the occurrence of damage and classify the damage. Example algorithms are presented include those based on autoregressive moving average (ARMA), wavelet energies from wavelet transform and rotation models. The algorithms are illustrated through application of data from test structures such as the ASCE Benchmark structure and laboratory tests of scaled bridge columns and steel frames. The paper concludes by identifying needs for research and development in order for such algorithms to become viable in practice.

PREDICTION OF FAULT TREND IN A LNG PLANT USING WAVELET TRANSFORM AND ARIMA MODEL

  • Yeonjong Ju;Changyoon Kim;Hyoungkwan Kim
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.388-392
    • /
    • 2009
  • Operation of LNG (Liquefied Natural Gas) plants requires an effective maintenance strategy. To this end, the long-term and short-term trend of faults, such as mechanical and electrical troubles, should be identified so as to take proactive approach for ensuring the smooth and productive operation. However, it is not an easy task to predict the fault trend in LNG plants. Many variables and unexpected conditions make it quite difficult for the facility manager to be well prepared for future faulty conditions. This paper presents a model to predict the fault trend in a LNG plant. ARIMA (Auto-Regressive Integrated Moving Average) model is combined with Wavelet Transform to enhance the prediction capability of the proposed model. Test results show the potential of the proposed model for the preventive maintenance strategy.

  • PDF