• 제목/요약/키워드: Auto contouring

검색결과 7건 처리시간 0.02초

지방주입술을 이용한 전두 및 측두 부위의 윤곽교정술 (Contouring of Forehead and Temple Area with Auto-Fat Injection)

  • 강재훈;정승원;이용해;국광식
    • Archives of Plastic Surgery
    • /
    • 제38권2호
    • /
    • pp.166-172
    • /
    • 2011
  • Purpose: Facial contouring surgery for improving congenital, acquired deformity and senile change were attempt in past. Recently contouring surgery became more interested subject for improving the flat forehead and temple area. Many synthetic materials were used such as Collagen, silicon, polyacrylamide gel as liquid form and Gore-tex, silicon implant, endotine as solid form. But, these synthetic implants associate complications as foreign body reaction, infection, displacement, granuloma formation and absorption. Auto-fat injection are used for disfigurement of many part of body. We did auto-fat injection for facial contouring of forehead and temple region. Auto-fat injection is suitable without foreign body reaction, displacement, and toxic reaction. Also auto-fat is relatively simple to obtain from patient and less expensive and able to repeat surgeries. Methods: From 2006 to 2009, 150 patients were treated with Auto-fat injection for facial contouring. For follow up, we sent questionnaire to all patients but 110 patients returned answer sheets. The patients consisted of 20 male patients and 90 female patients with an age ranged from 26 to 60, and the mean 43. Fat tissue were injected 6-8 cc in forehead, 7-12 cc in temple area and fat were harvested from thigh and abdomen. Results: In follow up, all patients, showed absorption of injected fat varied degree and except two patients all patients underwent secondary fat injection. Complications were minimal and neuropraxia of facial nerve were recovered. Most of the patients were satisfied with result of procedure, and answered that they recommend same procedure to their friends and will do surgery again. Conclusion: Auto-fat injections were implemented for facial contouring in 150 patients and obtained satisfactory result. Auto-fat injection is relatively easy procedure and applicable widely. Even though, by passing time, some of the injected fats are absorbed, auto-fat injection could be choice of treatment for contouring forehead and temple. With accumulations of cases and development of surgical technique, better result could be expected.

3차원 입체조형치료시 Auto Contouring tool의 유용성 평가 (Evaluation of auto contouring accuracy in 3D planning system)

  • 최지민;주상규;박주영;박영환;김종식
    • 대한방사선치료학회지
    • /
    • 제14권1호
    • /
    • pp.35-39
    • /
    • 2002
  • Introduction : It is essential to input patients external contour in 3D treatment plan. We would like to see changes in depth and dose when 3D RTP is operating auto contouring when windows value (Width/Level) differs in this process. Material & Methode : We have analyzed the results with 3D RTP after CT Scanning with round CT Phantom. We have compared and analyzed MU values according to depth changes to Isocenter changing external contour and inputting random Window value. We have watched change values according to dose optimization in 4 directions(LAO, LPO, RAO, RPO), We plan 100 case for exact analyzation. We have results changing window value random to each beam in 100 cans. Result : It showed change between minimum and maximum value in 4 beam is Depth 0.26mm, MU $1.2\%$ in LAO. It showed LPO-Depth 0.13mm, MU $0.9\%$, RAO-Depth 0.2mm MU $0.8\%$, RPO-Depth 0.27mm, MU $1.1\%$ Conclusion : Maximum change in depth 0.27 mm, MU error rate is $0.12\%$ according to Window change. As we can see in these results, it seems Window value change doesn't effect in treatment. However, it seems there needs to select appropriate Window value in precise treatment.

  • PDF

다축 연동제어 시스템에 대한 통합형 자율동조 (Integrated Auto-Tuning of a Multi-Axis Cross-Coupling Control System)

  • 이학철;지성철
    • 한국정밀공학회지
    • /
    • 제26권12호
    • /
    • pp.55-61
    • /
    • 2009
  • Machining systems have been evolved to produce more detailed products of high added value. This has been possible, in large part, due to the development of highly accurate multi-axis CNC machine tools. The conventional CNC of machine tools has individual axis controllers to maximize tracking performance. On the other hand, cross-coupling controllers can be integrated into the conventional CNC to enhance contouring performance. For this multi-axis cross-coupling control system, it is necessary to automatically adjust the controller gains depending on operating conditions and/or other external conditions from an optimization perspective. This paper proposes automatic modeling of feed drive systems that minimizes the difference in behavior between the system model and the actual system. Based on the modeling, an integrated auto-tuning method is also proposed to improve both tracking and contouring accuracy of a 3-axis cross-coupling control system as well as users' convenience. The proposed methods are evaluated by both simulation and experiments.

Development of PC-based Radiation Therapy Planning System

  • Suh, Tae-Suk;P task group, R-T
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.121-122
    • /
    • 2002
  • The main principle of radiation therapy is to deliver optimum dose to tumor to increase tumor cure probability while minimizing dose to critical normal structure to reduce complications. RTP system is required for proper dose plan in radiation therapy treatment. The main goal of this research is to develop dose model for photon, electron, and brachytherapy, and to display dose distribution on patient images with optimum process. The main items developed in this research includes: (l) user requirements and quality control; analysis of user requirement in RTP, networking between RTP and relevant equipment, quality control using phantom for clinical application (2) dose model in RTP; photon, electron, brachytherapy, modifying dose model (3) image processing and 3D visualization; 2D image processing, auto contouring, image reconstruction, 3D visualization (4) object modeling and graphic user interface; development of total software structure, step-by-step planning procedure, window design and user-interface. Our final product show strong capability for routine and advance RTP planning.

  • PDF

Collimator Detector Response(CDR) 회복이 적용된 SPECT/CT에서 검출거리에 따른 정량적 정확성 평가 (The Evaluation of Quantitative Accuracy According to Detection Distance in SPECT/CT Applied to Collimator Detector Response(CDR) Recovery)

  • 김지현;손현수;이주영;박훈희
    • 핵의학기술
    • /
    • 제21권2호
    • /
    • pp.55-64
    • /
    • 2017
  • 최근 SPECT/CT의 보급과 함께 다양한 영상보정 방법들을 빠르고 정확하게 적용할 수 있게 되면서, 영상품질 향상과 더불어 정량적 정확성까지 기대할 수 있게 되었다. 그중 Collimator Detector Response (CDR) 회복(recovery)은 검출기면의 거리로부터 발생된 blurring 효과를 보상하여 분해능 회복을 목적으로 하는 보정방법이다. 본 연구에서는 SPECT/CT 영상에서 CDR recovery 가 적용되었을 때 검출거리 변화에 따른 정량적 변화를 알아보고자 하였다. 검출거리의 변화에 따른 획득 계수의 차이를 알아보고자 검출거리를 궤도방식(obit type)에 따라 Circular는 X, Y축 반경 30 cm, Non-Circular는 X, Y축 반경 21 cm, 10 cm, Non-Circular Auto(=Auto Body Contouring_ ABC, spacing limit 1 cm)로 설정하였고, 재구성 방법은 CDR recovery(CDRr)의 사용 유/무에 따른 계수 회복 차이를 알아보고자 OSEM (w/o CDRr)와 Astonish(3D-OSEM with CDRr)로 구분하여 적용하였다. 이 때 감쇠, 산란, 붕괴 보정은 모든 영상에 공통 적용하였다. 정량적 평가를 위해 교정인자(calibration factor_CF) 산출을 목적으로 교정영상(cylindrical phantom, $^{99m}TcO_4$ 123.3 MBq, 물 9293 ml)을 획득하였고, 팬텀 실험을 위하여 50 cc 주사기에 물 31 ml를 채우고 $^{99m}TcO_4$ 123.3 MBq를 설정하여 팬텀영상을 획득하였다. 팬텀 영상에서 주사기 전체 체적에 VOI(volume of interest)를 설정하여 각 조건별로 총 계수 값을 측정하였고, CF를 적용시켜 설정된 참값 대비 추정값의 오차를 구하여 보정에 따른 정량적 정확성을 확인하였다. 산출된 CF는 154.27 (Bq/ml/cps/ml)이며, 각 조건별 영상에서 참값 대비 추정값은 OSEM에서 Circular 86.5%, Non-Circular 90.1%, ABC 91.3% Astonish에서 Circular 93.6%, Non-Circular 93.6%, ABC 93.9%으로 분석되었다. OSEM은 검출거리가 가까울수록 정확성이 높아졌으며, Astonish의 경우에는 거리와 상관없이 거의 유사한 값을 나타내었다. 오차는 OSEM Circular(-13.5%)에서 가장 크고, Astonish ABC(-6.1%)에서 가장 적었다. SPECT/CT영상에서 CDR recovery 적용을 통한 거리보상이 이루어 졌을 때 검출거리가 먼 조건에서도 근접검출과 거의 동일한 정량적 정확성을 보였고, 검출거리의 변화에 영향을 받지 않고 정확한 보정이 가능한 것을 확인 할 수 있었다.

  • PDF

Accuracy evaluation of liver and tumor auto-segmentation in CT images using 2D CoordConv DeepLab V3+ model in radiotherapy

  • An, Na young;Kang, Young-nam
    • 대한의용생체공학회:의공학회지
    • /
    • 제43권5호
    • /
    • pp.341-352
    • /
    • 2022
  • Medical image segmentation is the most important task in radiation therapy. Especially, when segmenting medical images, the liver is one of the most difficult organs to segment because it has various shapes and is close to other organs. Therefore, automatic segmentation of the liver in computed tomography (CT) images is a difficult task. Since tumors also have low contrast in surrounding tissues, and the shape, location, size, and number of tumors vary from patient to patient, accurate tumor segmentation takes a long time. In this study, we propose a method algorithm for automatically segmenting the liver and tumor for this purpose. As an advantage of setting the boundaries of the tumor, the liver and tumor were automatically segmented from the CT image using the 2D CoordConv DeepLab V3+ model using the CoordConv layer. For tumors, only cropped liver images were used to improve accuracy. Additionally, to increase the segmentation accuracy, augmentation, preprocess, loss function, and hyperparameter were used to find optimal values. We compared the CoordConv DeepLab v3+ model using the CoordConv layer and the DeepLab V3+ model without the CoordConv layer to determine whether they affected the segmentation accuracy. The data sets used included 131 hepatic tumor segmentation (LiTS) challenge data sets (100 train sets, 16 validation sets, and 15 test sets). Additional learned data were tested using 15 clinical data from Seoul St. Mary's Hospital. The evaluation was compared with the study results learned with a two-dimensional deep learning-based model. Dice values without the CoordConv layer achieved 0.965 ± 0.01 for liver segmentation and 0.925 ± 0.04 for tumor segmentation using the LiTS data set. Results from the clinical data set achieved 0.927 ± 0.02 for liver division and 0.903 ± 0.05 for tumor division. The dice values using the CoordConv layer achieved 0.989 ± 0.02 for liver segmentation and 0.937 ± 0.07 for tumor segmentation using the LiTS data set. Results from the clinical data set achieved 0.944 ± 0.02 for liver division and 0.916 ± 0.18 for tumor division. The use of CoordConv layers improves the segmentation accuracy. The highest of the most recently published values were 0.960 and 0.749 for liver and tumor division, respectively. However, better performance was achieved with 0.989 and 0.937 results for liver and tumor, which would have been used with the algorithm proposed in this study. The algorithm proposed in this study can play a useful role in treatment planning by improving contouring accuracy and reducing time when segmentation evaluation of liver and tumor is performed. And accurate identification of liver anatomy in medical imaging applications, such as surgical planning, as well as radiotherapy, which can leverage the findings of this study, can help clinical evaluation of the risks and benefits of liver intervention.

간 전이 암 환자의 18F-FDG PET 기반 종양 영역 정의: 영상 인자와 자동 영상 분할 기법 간의 관계분석 (Definition of Tumor Volume Based on 18F-Fludeoxyglucose Positron Emission Tomography in Radiation Therapy for Liver Metastases: An Relational Analysis Study between Image Parameters and Image Segmentation Methods)

  • 김희진;박승우;정해조;김미숙;유형준;지영훈;이철영;김금배
    • 한국의학물리학회지:의학물리
    • /
    • 제24권2호
    • /
    • pp.99-107
    • /
    • 2013
  • 간 전이 암은 이전에는 수술을 통한 외과적 절제가 주요 치료기법이었지만 방사선 치료 기법의 발전으로 인해 점차 방사선치료의 시행이 늘어나고 있다. 18F-FDG PET 영상은 간 전이 암 진단 시 더욱 우세한 민감도와 특이도를 보이며, 치료계획용 CT 영상과 더불어 종양조직의 위치를 정의하는 중요한 영상장비로 자리매김하고 있다. 본 연구에서는 간 전이 암의 18F-FDG PET 영상에 나타난 종양영역을 영상분할기법 적용하였으며 PET영상의 여러 인자들이 영상분할기법들에 미치는 영향을 알아보았다. 2009년부터 2012년까지 방사선 치료를 받은 간전이 환자들 중 18F-FDG PET/CT 촬영을 시행한 13명의 환자들의 치료계획용 CT와 PET/CT 영상을 얻었다. 그 뒤 PET 영상의 관심영역을 설정하기 위하여 3가지 영상 분할 기법인 상대적문턱기법, 기울기기법, 영역성장기법을 적용하였다. 이 결과들을 바탕으로 GTV와 각 영상 기법으로 구현된 종양 영역과 부피 비교를 시행하였으며 영상 분할 기법에 영향을 미치는 영상인자들과의 관계를 회귀 분석하였다. GTV (Gross Tumor Volume)의 평균 부피는 $60.9{\pm}65.9$ cc이며, 40% 상대적문턱값 기법은 $22.43{\pm}35.3$ cc, 50% 상대적문턱값 기법은 $10.11{\pm}17.9$ cc, 영역성장기법은 $32.89{\pm}36.8$ cc, 기울기기법은 $30.34{\pm}35.8$ cc로 나타났다. 기존의 GTV와 가장 유사한 영역을 나타낸 영상 분할 기법은 영역성장기법 이었다. 이 영역성장기법에 영향을 미치는 영상인자를 정량적으로 분석하기 위해 표준화 계수 ${\beta}$값을 이용하였으며, GTV의 크기, $TumorSUV_{MAX/MIN}$, $SUV_{max}$, TBR 순으로 나타났다. 이와 같은 PET 영상인자를 반영한 영상 분할 기법을 이용해서 종양 영역을 정의한다면 보다 정확하고 일관성 있는 종양그리기를 수행할 수 있으며 궁극적으로 종양에 최적화된 방사선량을 투여할 수 있을 것이다.