During the shift from gasoline vehicles to electric ones, auto parts manufacturing companies have realized the importance of improvement in the manufacturing process that does not require any layout changes nor extra investments, while maintaining their current production rate. Due to these reasons, for the auto part manufacturing company, I-company, this study has developed the simulation model of the PUSH system to conduct a process analysis in terms of production rate, WIP level, and logistics work's utilization rate. In addition, this study compares the PUSH system with other three manufacturing systems -KANBAN, DBR, and CONWIP- to compare the performance of these production systems, while satisfying the company's target production rate. With respect to lead-time, the simulation results show that the improvement of 77.90% for the KANBAN system, 40.39% for the CONWIP system, and 69.81% for the DBR system compared to the PUSH system. In addition, with respect to WIP level, the experimental results demonstrate that the improvement of 77.91% for the KANBAN system, 40.41% for the CONWIP system, and 69.82% for the DBR system compared to the PUSH system. Since the KANBAN system has the largest impacts on the reduction of the lead-time and WIP level compared to other production systems, this study recommends the KANBAN system as the proper manufacturing system of the target company. This study also shows that the proper size of moving units is four and the priority allocation of bottleneck process methods improves the target company's WIP and lead-time. Based on the results of this study, the adoption of the KANBAN system will significantly improve the production process of the target company in terms of lead-time and WIP level.
농업용 저수지는 전국적으로 중요한 수자원으로 기후변화에 따른 가뭄과 같은 이상기후의 영향에 취약한 특성을 가지며 적절한 운영을 위해 강화된 관리가 필요하다. 지속적인 모니터링을 통한 수위 추적(water level tracking)이 필요하지만 현실적인 문제로 현장 실측 및 관측이 어려운 실정이다. 본 연구는 저수지 수표면적을 측정하기 위해 광역 모니터링이 가능한 위성레이더 자료를 이용하여 4가지 AI 모델 간의 수체 탐지 성능에 대해 객관적인 비교를 제시한다. 위성 레이더자료는 Sentinel-1 SAR 이미지를 사용하였으며, 광학영상과 달리 기상환경에 영향을 적게 받기 때문에 장기 모니터링에 적합하다. 드론 이미지, Sentinel-1 SAR 그리고 DSM 데이터를 사용하여 Support Vector Machine (SVM), Random Forest (RF), Artificial Neural Network (ANN), Automated Machine Learning (AutoML)의 4가지 AI 모델을 구축했다. 연구대상 저수지는 총 22개소로 유효저수량이 30만톤 미만의 중소형 저수지이다. 총 45개 이미지가 모델 훈련과 검증에 사용되었으며, 연구 결과 AutoML 모델이 Accuracy=0.92, mIoU=0.81로 다른 3가지 모델에 비해 수체 픽셀 분류에서 0.01-0.03 더 나은 것을 보여주었다. 해당 결과는 SAR 영상으로부터 AutoML을 이용한 중소형 저수지 대상의 수체 분류 기법이 기존의 머신러닝 기법만큼의 성능을 보이는 것을 보여주었고, 학습을 통한 수표면적 분류 기술의 저수지 모니터링에 대한 적용 가능성을 보여주었다.
Even though, tanks are used at the many industry plants, it is very difficult to control the tank level without any overflow and shortage; moreover, cause of its complication of dynamics and nonlinearity, it's impossible to realize the accurate control using the mathematical model which can be applied to the various operation modes. However, the sliding mode controller(SMC) is known as having the robust variable structures for the nonlinear control systems with the parametric perturbations and with the sudden disturbances, but the auto-tuning of parameters was a problem. Therefore, in this paper, a Genetic Algorithm based Sliding Mode Controller (GA-SMC) for the precise control of the coupled tank level was tried. GA optimized the SMCs switching parameters easily and rapidly. The simulation results are shown that the tank level could be satisfactorily controlled with less overshoot and steady-stale error by the proposed GA-SMC.
This paper studies the effect of information quality level and customer demand on performance measures in a supply chain. The information quality level compares 2 types, the information levels of a customer demand and a lead time. The customer demand process follows a general auto-correlated AR(1) process without seasonality. In the AR(1) process, ${\sigma}$ indicates the degree of demand fluctuation and ${\rho}$ means the trend of customer demand. ANOVA tests using a 5% significance level are performed in SPSS to examine significant performance changes among various cases.
One-year-long groundwater-level data have been collected from 18 wells in Cheon-an area. The result of barometric efficiency, autocorrelation, cross-correlation and statistical distribution evaluated from the measurement data shows that groundwater-level measurements from observation wells are the principal source of information about aquifer characteristics. Data from WA-2 has high barometric efficiency as well as steady decreasing auto-correlation coefficient, which means nonleaky confined aquifer, Most aquifers in this study show the unconfined properties so that barometric efficiencies are mostly low and the coefficients of cross-correlation between groundwater-level and precipitation are commonly high. This study showed that the long-term groundwater-level monitoring data without artificial stress such as pumping would give accurate information about aquifer characteristics.
High-bandwidth DRAM을 위해 1Gb/s의 데이터 전송률까지 동작하고 그 출력 전압 스윙이 온도와 전원 전압(VDD) 변동에 무관한 CMOS open-drain 출력 구조 회로를 설계하였다. 출력 구동 회로는 여섯 개의 binary-weighted NMOS 트랜지스터로 구성되는데, 이 여섯 개 중에서 ON시킬 current control register의 내용은 추가 호로 없이 DRAM 칩에 존재하는 auto refresh 신호를 이용하여 새롭게 수정하였다. Auto refresh 시간 구간동안 current control register를 수정하는데, 이 시간 구간동안 부궤환 (negative feedback) 동작에 의해 low level 출력 전압($V_OL$)이 저전압 밴드갭 기준전압 발생기(bandgap reference voltage generator)에 의해서 만들어진 기준전압($V_{OL.ref}$)과도 같도록 유지된다. 테스트 칩은 1Gb/s의 데이터 전송률까지 성공적으로 동작하였다. 온도 $20^{\circ}C$~$90^{\circ}C$, 전원 전압 2.25V~2.75V영역에서 최악의 경우 제안된 출력 구동 회로의 $V_{OL.ref}$와 $V_OL$의 변동은 각각 2.5%와 725%로 측정된 반면, 기존의 출력 구동 회로의 $V_OL$의 변동은 같은 온도의 전원 접압의 영역에 대해 24%로 측정되었다.
순음청력검사기는 정확한 주파수와 음압을 갖는 순음과 차폐 음을 생성하여 출력할 수 있어야 한다. 이를 위해 일정한 기간마다 보정을 하는 것이 불가피하다. 그러나 수동 보정을 사용하는 일반 순음청력검사기의 음향 보정은 집중력이 필요할 뿐 아니라 시간이 많이 걸리는 단점이 있다. 반면, PC 기반 순음청력검사기의 경우 소프트웨어를 이용하여 자동으로 보정을 수행하는 것이 가능하다. 본 논문에서는 PC 기반 순음청력검사기의 자동 보정을 지원하기 위해 PC 사운드카드를 이용하여 구현한 음압측정기와 이를 이용한 순음청력검사기의 자동보정모듈을 기술한다. 자동 보정모듈을 이용하여 보정한 PC 기반 순음청력검사기를 국제표준기구가 제공하는 기준등가역치음압수준과의 적합 여부를 검증한다.
지역 또는 도메인에 작은 크기의 표본이 배정되어 추정의 정도가 낮을 때 사용하는 통계적 기법인 소지역추정에 관한 많은 연구가 진행되고 있다. 소지역추정에 사용되는 자료는 단위수준자료(unit level data)와 지역수준자료(area level data)로 분류된다. 본 논문에서는 단위수준자료를 이용하여 소지역추정을 실시한 후 얻어진 추정값에 공간통계분석기법을 도입하여 최종적인 소지역추정값을 얻는 이단계 소지역추정법을 제안하였다. 제안된 소지역추정법은 단위수준자료가 갖고 있는 정보와 지역수준자료가 갖고 있는 공간정보를 모두 이용하는 방법으로 추정의 정도를 높일 수 있는 새로운 방법이다. 본 논문에서는 경제활동인구조사 자료를 이용한 모의실험을 통해 이단계 소지역추정법의 우수성을 확인하였다.
Current source inverter drives of auto sequentially commutated type are very popular in high power applications, because of simple power circuit configuration with four quadrant operation. But the six-step current output create harmonic problems and the input power factor of such a drive is not always good. In this respect pulse width modulated drives using gate turn off thyristors ( GTO ) are finding application, especially in traction drives. However the switching and snubber loses of a GTO do not permit the inverter switching frequency go beyond a few hundred hertz.This will again introduce low frequency harmonic problems. Multi level inverters of the 3-level and 5-level can be considered as an alternative to overcome the low switching frequency harmonic problem of the 2-level GTO inverters. But with multi level inverters the complexity of the power circuit increases. In this paper a combination of multi level ( 2-level and 3-level ) inverters and multi phase induction motor ( 3-phase and 6-phase) configurations are presented for high power VSI drives for traction applications with reduced inverter switching frequency requirements coupled with reduced voltage rating for the power switch.
음성 인식 연구는 유사음소 단위의 인식시스템을 구축하는 방향과 단어 단위의 인식시스템에서의 효율을 최대화하는 방향으로 이루어지고 있다. 이중 유용한 유사음소 단위의 인식시스템 구현을 위해서는 음소의 경계 검출 문제와 검출된 음소에 대한 인식률 향상 문제가 해결되어야 한다. 기존의 LPC(Linear Predictive Coefficient) 방법들은 기준 음소데이터의 LPC와 입력 음성프레임의 LPC 사이의 거리를 Itakura-Saito 방법으로 구하여 음소의 경계를 검출하였으며, 근래에는 MFCC(Mel-Frequency-Cepstrum Coefficient)를 이용하여 스펙트럼의 천이부분을 음소의 경계로 검출하는 방법들이 제안되어왔으나 이러한 방법들은 공통적으로 적응성이 미비하다는 단점이 있다. 본 논문에서는 이러한 단점을 극복하기 위해 음소경계검출을 위해서는 auto-correlation을 이용하고 음소인식을 위해서는 적응성이 뛰어난 다층 Feed-Forward 신경망을 사용하는 새로운 인식시스템을 제안하였다 제안하는 시스템은 기존의 방법들보다 적응성이 뛰어나고 특징추출부분과 인식 부분의 알고리듬이 독립적이라는 장점을 가지며 프레임단위의 음소인식시스템의 구현 가능성을 확인해 주었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.