• 제목/요약/키워드: Austenitic Weld

검색결과 114건 처리시간 0.029초

육성용접된 Wrapping Roll의 비드마크제거를 위한 미세조직 (The Microstructure For Removing of Beadmark of Hardfacing Wrapping Roll)

  • 유국종;백응률
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2000년도 특별강연 및 추계학술발표대회 개요집
    • /
    • pp.216-218
    • /
    • 2000
  • In case of hardfaced wrapping roll, beadmark shape appear at wrapping roll surface due to irregular wear between weld bead. Irregular wear of this is caused by difference of hardness between weld bead. This study aims at investigating which matrix is good for removing of beadmark at wrapping roll surface. So, we make specimen with martensitic matrix and austenitic matrix. The hardfacing alloys were deposited 4 times on a SS41 steel plate using self-shielding flux cored arc welding method. Difference of hardness between weld bead of specimen with matrix of martensite was higher than specimen with matrix of austenite both as-welded and after heat treatment. Therefore, austenitic matrix is better than martensitic matrix for removing of beadmark of wrapping roll surface.

  • PDF

오버레이용접된 Wrapping Roll의 비드마크제거를 위한 열영향부의 미세조직에 관한 연구 (The Study on Microstructure of the Heat Affected Zone for Removing of Beadmark in the Overlayered Wrapping Roll)

  • 유국종;백응률
    • Journal of Welding and Joining
    • /
    • 제18권6호
    • /
    • pp.68-73
    • /
    • 2000
  • In case of overalyered wrapping roll, beadmark shape appear at wrapping roll surface due to irregular wear between weld bead. Irregular wear of this is caused by difference of hardness between weld bead. This study aims at investigating which matrix is good for removing of beadmark at wrapping roll surface. So, we make specimen with martensitic matrix and austenitic matrix. The overlayered alloys were deposited 4 times on a SS41 steel plate using self-shielding flux cored arc welding method. Difference of hardness between weld bead of specimen with matrix of martensite was higher than specimen with matrix of austenite both as-welded and after heat treatment. Therefore, austenitic matrix is between than martensitic matrix for removing of beadmark of wrapping roll surface.

  • PDF

스테인레스강 316LN의 전자빔용접과 협개선TIG 용접특성 비교 (The Comparison of Characteristic between Electron Beam Welding and Narrow-gap TIG welding with 316LN Stainless Steel)

  • 정인철;김용재;이경운;심덕남
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2005년도 춘계학술발표대회 개요집
    • /
    • pp.82-84
    • /
    • 2005
  • Among the advanced welding processes which are superior to conventional process, Electron beam welding and Narrow-gap TIG welding are most prospective in being applicable for the heavy industry field. With STS316LN, which is high strengthened austenitic stainless steel, the characteristic evaluation for these welding processes was carried out through the mechnical tests and property analyses. For the tensile strength EBW is better while in reverse for the yield strength. In Narrow-gap TIG the distribution of hardness values has some deviation according to the thickness direction while EBW has a tendency of a litter high hardness values in weld metal. After EB welding brings the reduction of nitrogen content, in TIG welding weld metal depends on the contents of welding material. Both processes have almost austenitic structure, but weld metal of EBW is also shown terrific structure

  • PDF

Stress-assisted oxidation behaviour of inconel 52M/316 austenitic stainless-steel dissimilar weld joints in a simulated pressurised water reactor

  • Xu, Youwei;Yang, Binhui;Shi, Yu
    • Nuclear Engineering and Technology
    • /
    • 제54권10호
    • /
    • pp.3778-3787
    • /
    • 2022
  • The stress-assisted oxidation behaviour of Inconel 52 M/316 austenitic stainless-steel (SS) dissimilar weld joints (DMWJ) in a simulated pressurised water reactor environment was investigated. A corrosion galvanic couple formed between the Inconel 52 M and 316 SS due to differences in their nonferrous metal content. The electric field from the corrosion couple attracted metal cations (e.g. Fe2+, Cr3+) to the Inconel 52 M that were deposited as FeCr2O4. An additional corrosion galvanic couple was generated due to variations in the plastic deformation of the DMWJ. The superposition of electric fields from the different couples resulted in ridge-like oxide depositions in the fusion zone.

오스테나이트계 스테인리스강 용접부의 금속학적 현상에 관한 연구(I) - 시판 오스테나이트계 스테인리스강의 용접성 - (A Study of Metallurgical Phenomena in Austenitic Stainless Steel Fusion Welds (I) -Weldability of Commercial Austenitic Stainless Steels-)

  • 이종섭;김숙환
    • Journal of Welding and Joining
    • /
    • 제16권3호
    • /
    • pp.111-120
    • /
    • 1998
  • To predict and evaluate metallurgical and mechanical behavior of th welds, it is essential to understand solidification behavior and microstructural evolution experienced in the welds, neither of which follows the equilibrium phase diagram because of rapid heating and cooling conditions. Metallurgical phenomena in austenitic stainless steel fusion welds, types 304, 309S, 316L, 321 and 304N, were investigated in this study. Autogenous GTA welding was performed on weld coupons, and primary solidification mode and phase distribution were investigated from the welds. Varestraint test was employed to evaluate solidification cracking susceptibilities of the alloys. GTA weld fusion zones in type 304, 321 and 304N stainless steels experienced primary ferrite solidification while those in type 309S primary austenite solidification. Type 316L exhibited a mixed type of primary ferrite and primary austenite solidification. The primary solidification mode strongly depended on $Cr_{eq}/Ni_{eq}$ ratio. In terms of solidification cracking susceptibility, type 309S that solidified as primary austenite exhibited high cracking susceptibility while the alloys experienced primary ferrite solidification showed low cracking susceptibility. The relative ranking in solidification cracking susceptibility was type 304=type 304N < type 321 < type 316L < type 309S.

  • PDF

소둔 및 용접후열처리가 슈퍼 오스테나이트계 스테인리스강의 부식거동에 미치는 영향 (Effects of Annealing and Post-weld Heat Treatments on Corrosion Behaviors of Super Austenitic Stainless Steel)

  • 윤덕빈;박진성;조동민;홍승갑;김성진
    • Corrosion Science and Technology
    • /
    • 제20권6호
    • /
    • pp.426-434
    • /
    • 2021
  • The effect of two different annealing temperatures on the level of the second phase precipitated in the microstructure and the corrosion behaviors of super austenitic stainless steel were examined. The sample annealed at a higher temperature had a significantly lower fraction of the sigma phase enriched with Cr and Mo elements, showing more stable passivity behavior during the potentiodynamic polarization measurement. However, after the welding process with Inconel-type welding material, severe corrosion damage along the interface between the base metal and the weld metal was observed regardless of the annealing temperature. This was closely associated with the precipitation of the fine sigma phase with a high Mo concentration in the unmixed zone (UMZ) during the welding process, leading to the local depletion of Mo concentrations around the sigma phase. On the other hand, the fraction of the newly precipitated fine sigma phase in the UMZ was greatly reduced by post-weld heat treatment (PWHT), and the corrosion resistance was greatly improved. Based on the results, it is proposed that the alloy composition of welding materials and PWHT conditions should be further optimized to ensure the superior corrosion resistance of welded super austenitic stainless steel.

스테인레스강 Overlay 용접부의 Disbonding에 관한 연구 1

  • 이영호;윤의박
    • Journal of Welding and Joining
    • /
    • 제1권2호
    • /
    • pp.45-52
    • /
    • 1983
  • Many pressure vessels for the hot H$\sub$2//H$\sub$2/S service are made of 2+1/4Cr-1Mo steel with austenitic stainless steel overlay to combat agressive corrosion due to hydrogen sulfide. Hydrogen dissolves in to materials during operation, and sometimes gives rise to unfore-seeable damages. Appropriate precautions must, therefore, be taken to avoid the hydrogen induced damages in the design, fabrication and operation stage of such reactor vessels. Recently, hydrogeninduced cracking (or Disbonding) was found at the interface between base metal and stainless weld overlay of a desulfurizing reactor. Since the stainless steel overlay weld metal is subjected to thermal and internal-pressure loads in reactor operation, it is desirable for the overlay weld metal to have high strength and ductility from the stand point of structural safety. In section III of ASME Boiler and Pressure Vessel Code, Post-Weld Heat Treatment(PWHT) of more than one hour per inch at over 1100.deg. F(593.deg. C) is required for the weld joints of low alloy pressure vessel steels. This heat treatment to relieve stresses in the welded joint during construction of the pressure vessel is considered to cause sensitization of the overlay weld metal. The present study was carried out to make clear the diffusion of carbon migration by PWHT in dissimilar metal welded joint. The main conclusion reached from this study are as follows: 1) The theoretical analysis for diffusion of carbon in stainless steel overlay weld metal does not agree with Fick's 2nd law but the general law of molecular diffusion phenomenon by thermodynamic chemical potential. 2) In the stainless steel overlay welded joint, the PWHT at 720.deg. C for 10 hours causes a diffusion of carbon atoms from ferritic steel into austenitic steel according to the theoretical analysis for carbon migration and its experiment. 3) In case of PWHT at 720.deg. C for 10 hours, the micro-hardness of stainless steel weld metal in bonded zone increase very highly in the carburized layer with remarkable hardening than that of weld metal.

  • PDF

스테인레스강용접 열영향부의 KLA거동 및 기계적 특성에 관한 연구 (A study on the KLA behaviors in HAZ and the mechanical properties of austenitic stainless steel weld)

  • 조종춘;김영석;김학민
    • Journal of Welding and Joining
    • /
    • 제8권4호
    • /
    • pp.27-34
    • /
    • 1990
  • Integranular corrosion behaviors of KAL (Knife Line Attack) and mechanical properties such as tensile and creep rupture were investigated for the tube material used for nearly 20 years under the condition of 463.deg. C and 28 $kg/cm^2$. Based and weld metal were austenitic stainless steel AISI 321 containing Ti, AISI 347 containing Nb, respectively. KLA is a kind of the intergranular corrosion which often occurs just near the HAZ (heat affected zone) of AISI 321 and AISI 347 stainless steel due to the grain boundary sensitization. In KLA zone, intergranular corrosion crack has propagated outwards from the inner surface and carbides of white and narrow band type assuming as (Cr, Fe) carbide were confirmed. All the delta-ferrite formed in the weld metal during weld solidification has been transformed into sigma-phase since delta-ferrte was exposed for 20 years at 463.deg. C. Elongation was very low at the range from room temperature to 600.deg. C and it was confirmed that creep-rupture properties were not consideralbly affected.

  • PDF

용접방향에 따른 오스트나이트계 스테인리스강(STS304L) 용착금속파단 용접접합부의 내력에 관한 실험적 연구 (Experimental Study on Strength of Austentic Stainless Steel (STS 304L) Fillet-Welded Connection with Weld Metal Fracture According to Welding Direction)

  • 김태수;이후창;황보경;조태준
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제22권1호
    • /
    • pp.81-89
    • /
    • 2018
  • 오스테나이트계 스테인리스강은 우수한 내식성, 내구성 및 내화성을 지닌다. 특히, 오스테나이트계 스테인리스강중의 대표인 STS304에 비해 저탄소를 함유하고 있는 STS304L은 현장용접 후 별도의 열처리 없이 높은 내입계부식성능을 지니고 있어 용접후 내입계 부식이 우려되는 부재 접합에 적용할 수 있다. 본 연구에서는 티그(TIG)용접으로 필릿 용접된 STS304L 용접접합부의 용접재(용착금속부) 내력과 파단 메카니즘을 조사하고자 한다. 주요변수인 하중방향에 대한 용접선의 배치에 따라 TFW(하중직각방향 용접), LFW(하중방향용접), FW(하중방향용접과 하중직각방향 용접조합)시리즈의 실험체를 제작하여 인장실험을 실시하였고, 각각 인장파단,전단파단, 블록전단파단(인장파단과 전단파단의 조합)이 발생하였다. 동일 용접길이에 대해 TFW 시리즈의 접합부가 가장 높은 내력을 나타났으며, 현행기준식(KBC2016/AISC2010)과 기존 연구자의 식에 의한 예측내력과 비교한 결과, TFW와 LFW접합부는 과소평가되었고 FW실험체는 과대평가되었다. 실제 파단 위험단면과 블록전단파단 메카니즘을 고려한 내력식을 제안하였다.

페라이트계 및 오스테나이트계 스테인리스강과 IF강의 이종 접합부의 저항 점 용접성 평가 (Assessment of Resistance Spot Weldability of Dissimilar Joints of Austenitic Stainless Steels/IF Steels and Ferritic Stainless Steels/IF Steels)

  • 이진범;김동철;남대근;강남현;김순국;유지훈;임영목;박영도
    • 대한금속재료학회지
    • /
    • 제49권1호
    • /
    • pp.64-72
    • /
    • 2011
  • The spot weldability of dissimilar metal joints between austenitic stainless steels (STS316)/IF steels and ferritic stainless steels (STS430)/IF steels was investigated. This study was aimed to determine the spot welding parameters for a dissimilar metal joint and to evaluate the dissimilar metal joint's weldability, including its welding nugget shape, tensile-shear strength, hardness, and microstructure. The comparison of these results was described in terms of fracture behavior. Compared with the weld lobe of similar metal joints, dissimilar metal joints (STS430/IF) had reduced weld current range. However, the weld lobe of STS316/IF steel joint showed increased weld current range. This is because the dilution of chemical composition in the molten weld pool suppressed the heat input being caused by Joule heat with current flow through the samples. The microstructure of the fusion zone was fully martensite and mixture of ferrite and martensite for austenitic stainless steel/IF steel and ferritic stainless steel/IF steel combination, respectively. The experimental results showed that the shape of nugget was asymmetric, in which the fusion zone of the austenitic and ferritic stainless steel sheet was larger due to the higher bulk-resistance. The predicted microstructure by using the Schaeffler diagram was well matched with experimental results. After peel test, the fracture was initiated from heat affected zone of ferritic stainless steel sheet side, however the final fracture was propagated into the IF steel sheet side due to its lower strength.