• Title/Summary/Keyword: Austenite Stainless Steel

Search Result 192, Processing Time 0.028 seconds

Effect of Reverse Transformation on the Mechanical Properties of High Manganease Austenitic Stainless Steel (고 Mn 오스테나이트계 스테인리스강의 기계적 성질에 미치는 역변태의 영향)

  • Kang, C.Y.;Hur, T.Y.
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.6
    • /
    • pp.413-418
    • /
    • 2012
  • This study was carried out to investigate the effect of reverse transformation on the mechanical properties in high manganese austenitic stainless steel. Over 95% of the austenite was transformed to deformation-induced martensite by 70% cold rolling. Reverse transformation became rapid above an annealing temperature of $550^{\circ}C$, but there was no significant transformation above $700^{\circ}C$. In addition, with an increasing annealing time at $700^{\circ}C$, reverse transformation was induced rapidly, but the transformation was almost completed at 10 min. There was a rapid decrese in strength and hardness with annealing at temperature above $550^{\circ}C$, while elongation increased rapidly above $600^{\circ}C$. At $700^{\circ}C$, hardness and strength decreased rapidly, and elongation increased steeply with an increasing reverse treatment time up to 10 min, whereas there were no significant change with a treatment time after 10 min. The reverse-transformed austenite showed an ultra-fine grain size less than $0.2{\mu}m$, which made it possible to strengthen the high manganese austenitic stainless steel.

Dissimilar Metal Welding of Austenite Stainless Steel and Low Carbon Steel using CW Nd:YAG Laser (CW Nd:YAG 레이저를 이용한 저 탄소강과 오스테나이트계 스테인레스강의 이종금속 용접)

  • Yoo Young Tae;Shin Ho Jun;Ahn Dong-Gyu;Im Kiegon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.17-26
    • /
    • 2005
  • Dissimilar-metal welds(DHWs) are used widely in various industrial applications due to the pratical importance from the technical and economic aspect. However, DMWs have several fabricative and metallurgical drawbacks that can often lead to in-service failures. For example, the most pronounced fabrication faults are hot cracks. Recently, DMWs have used the various of heat source to decrease such as faults. In this paper, the weldability on dissimilar metal welds of Austenite stainless steel and Low carbon steel using a continuous wave Nd:YAG laser was experimentally investigated. Experiments were conducted to determine effects of welding parameters, on eliminating or reducing the extent welding zone formation at dissimilar metal welds and to optimize those parameters that have the most influence parameters such as focus length, power, beam speed, shielding gas, and wave length of laser.

RF Plasma Nitriding of AISI 304 Stainless Steel

  • Kim, Sun-Kyu;Yoo, Jung-Sik;Matthew P. Fewell
    • Journal of Surface Science and Engineering
    • /
    • v.37 no.1
    • /
    • pp.53-57
    • /
    • 2004
  • Austenitic stainless steel AISI 304 was nitrided in a low-pressure RF plasma using pure nitrogen. With a treatment of time of 4.0h at $400^{\circ}C$, the nitrogen-rich layer on the sample was $3\mu\textrm{m}$thick and had a hardness of approximately 4.4 times higher than that of untreated material. XRD data showed that as the process temperature rose from 350∼$450^{\circ}C$, the expanded austenite peaks became more prominent while the austenite peaks became weaker. Expanded austenite was transformed to ferrite and CrN at the treatment of$ 500^{\circ}C$. Langmuir probe measurements showed that electron density decreased above $450^{\circ}C$.

Low Temperature Tensile Properties of High Temperature Gas-nitrided Duplex Stainless Steel

  • On, Han-Yong;Kong, Jung-Hyun;Kim, Mi-Jeong;Park, Sang-Joon;Kang, Chang-Yong;Sung, Jang-Hyun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.5
    • /
    • pp.263-268
    • /
    • 2010
  • This investigation was focused on the low temperature tensile properties, phase change, changes in nitrogen content and corrosion resistance in the 22Cr-5Ni-3Mo duplex stainless steel after high temperature gas nitriding and solution annealing (HTGN-SA). From the HTGN-SA treatment, the duplex (ferrite + austenite) phase changed into austenite single phase. The nitrogen content of austenite single-phase steel showed a value of ~0.54%. For the HTGN-SA treated austenitic steel, tensile strength increased with lowering test temperature, on the other hand elongation showed the maximum value of 28.2% at $-100^{\circ}C$. The strain-induced martensitic transformation gave rise to lead the maximum elongation. After HTGN-SA treatment, corrosion resistance of the austenite single-phase steel increased remarkably compared with HTGN- treated steel.

Effect of the Heat Treatment Parameters on the Phase Transformation and Corrosion Resistance of Fe-14Cr-3Mo Martensitic Stainless Steel

  • Park, Jee Yong;Park, Yong Soo
    • Corrosion Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.56-61
    • /
    • 2007
  • Carbide dissolution during heating processes can change chemical composition of martensitic stainless steel in its austenitic phase. Although the austenitizing treatments were carried out at a homogeneous austenite region, the amount of carbon atom in the matrix differs. Increase in the amount of carbon contents in the matrix resulted in decreasing MS temperature, which consequently causes the volume fraction of the retained austenite to increase. This study reveals the effects of the austenitizing treatment on the properties of Fe - 0.3C - 14Cr - 3Mo martensitic stainless steel change with different austenitizing temperatures.

Development of Multi-layer Bellows using Ferritic Stainless Steel (페라이트계 스테인리스강을 사용한 다층형 벨로우즈 개발)

  • Suh, C.H.;Oh, S.K.;Jung, Y.C.;Choi, J.Y.;Park, M.K.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.281-285
    • /
    • 2008
  • Ferritic stainless steel is used for parts of exhaust system of commercial vehicle, because it has such advantages as low price and high corrosion resistant compared with austenite stainless steel. Even though ferritic stainless steel has these merits, to manufacture multi-layer bellows with complex geometry, austenite stainless steel is being used in the industry, because of it's high ductility. However, recently, the mechanical property of the ferritic stainless is getting improved and alternating austenitic stainless steel. In this paper, the possibility of mass production of bellows made of ferritic stainless steel like MH1 and 443CT is studied. Tensile test and ridging test are carried out to observe mechanical properties of STS304, MH1 and 443CT. Forming analysis using FEM is performed to investigate plastic strain during forming process. Prototype bellows has been made using STS304, MH1 and 443CT, respectively, and fatigue tests are carried out to evaluate fatigue life of bellows.

  • PDF

Research of Nitriding Process on Austenite Stainless Steel with Plasma Immersion Ion Beam (플라스마 이온증착 기술을 이용한 스테인리스강의 질화처리에 관한 연구)

  • Kim, Jae-Dol;Park, Il-Soo;Ok, Chul-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.262-267
    • /
    • 2008
  • Plasma immersion ion beam (PIIB) nitriding process is an environmentally benign and cost-effective process, and offers the potential of producing high dose of nitrogen ions in a way of simple, fast and economic technique for the high plasma flux treatment of large surface area with nitrogen ion source gas. In this report PIIB nitriding technique was used for nitriding on austenite stainless steel of AISI304 with plasma treatment at $250{\sim}500^{\circ}C$ for 4 hours, and with the working gas pressure of $2.67{\times}10^{-1}$ Pa in vacuum condition. This PIIB process might prove the advantage of the low energy high flux of ion bombardment and enhance the tribological or mechanical properties of austenite stainless steel by nitriding, Furthermore, PIIB showed a useful surface modification technique for the nitriding an irregularly shaped three dimensional workpiece of austenite stainless steel and for the improvement of surface properties of AISI 304, such as hardness and strength

Characteristic Evaluation Based on the Heat Treatment Conditions of Super Duplex Stainless Steel with 0.2% N as an Additive - Part 1: Mechanical Properties and Microstructure (0.2% N을 첨가한 수퍼 2상 스테인리스강의 열처리 조건에 따른 특성 평가 - 제1보: 기계적 특성 및 미세조직)

  • Ahn, Seok-Hwan;Kang, Heung-Joo;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.46-50
    • /
    • 2008
  • Super duplex stainless steel has along life in severe environments because of its strength and corrosion resistance. If 0.2$\sim$0.3% Nitrogen in aninterstitial solid solution is added, the austenite structure is reinforced. This improves the solid solution hardening and the anticorrosionability. In this study, the mechanical properties and structures of the super duplex stainless steel with the 0.2% N additive were investigated to determine the effect of various volume fractions on the austenite phase. The various volume fractions and distributions of the austenite structure in the applied test specimens were obtained by changing the heat treatment temperature and cycle. The characteristics by amounts of the $\sigma$ phase obtained from the precipitation heat treatment were alsoinvestigated. From the results, when the austenite volume fraction increases, the tensile strength decreases and elongation increases. And the $\sigma$ phase was rapidly increased by increasing the heat treatment time. When the volume fraction of the $\sigma$ phase increased, tensile strength increased.

Comparative Study on Microstructures of Hot-rolled STS 304L/A516-70N and STS 316L/A516-70N Clad Plates (열간압연으로 제조된 STS 304L/A516-70N과 STS 316L/A516-70N 클래드재들의 미세조직에 대한 비교 연구)

  • Jin, Ju-Chan;Cho, Soochul;Sim, Hoseop;Lee, Young-Kook
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.4
    • /
    • pp.171-178
    • /
    • 2021
  • In the present study, we comparatively investigated the microstructures of two hot-rolled stainless steel clad plates; STS 304L - low carbon steel A516-70N and STS 316L - A516-70N. The STS 304L/A516-70N clad plate (Clad_304L_Ni) had a Ni-interlayer between stainless steel and carbon steel and a 90 ㎛ thick deformation band of unrecrystallized austenite grains on the stainless steel. The STS 316L/A516-70N clad plate (Clad_316L) had no interlayer and almost fully recrystallized austenite grains. Clad_304L_Ni exhibited the thinner a decarburized layer in carbon steel and a total carburized layer in stainless steel than Clad_316L. However, a severely carburized layer in stainless steel was thicker for Clad_304L_Ni than Clad_316L. Hardness profiles near the interface of clad plates matched well with microstructures at locations where the hardness values were measured.

Effect of Retained and Reversed Austenite on the Damping Capacity in High Manganese Stainless Steel (고 Mn 스테인리스강의 감쇠능에 미치는 잔류 및 역변태 오스테나이트의 영향)

  • Kim, Y.H.;Lee, S.H.;Kim, S.G.;Kang, C.Y.
    • Korean Journal of Materials Research
    • /
    • v.25 no.1
    • /
    • pp.9-15
    • /
    • 2015
  • The effect of retained and reversed austenite on the damping capacity in high manganese stainless steel with two phases of martensite and austenite was studied. The two phase structure of martensite and retained austenite was obtained by deformation for various degrees of deformation, and a two phase structure of martensite and reverse austenite was obtained by reverse annealing treatment for various temperatures after 70 % cold rolling. With the increase in the degree of deformation, the retained austenite and damping capacity rapidly decreased, with an increase in the reverse annealing temperature, the reversed austenite and damping capacity rapidly increased. With the volume fraction of the retained and reverse austenite, the damping capacity increased rapidly. At same volume of retained and reversed austenite, the damping capacity of the reversed austenite was higher than the retained austenite. Thus, the damping capacity was affected greatly by the reversed austenite.