• Title/Summary/Keyword: Aurora-A

Search Result 109, Processing Time 0.023 seconds

Elevated Aurora Kinase A Protein Expression in Diabetic Skin Tissue

  • Cho, Moon Kyun;An, Je Min;Kim, Chul Han;Kang, Sang Gue
    • Archives of Plastic Surgery
    • /
    • v.41 no.1
    • /
    • pp.35-39
    • /
    • 2014
  • Background Aurora kinase A (Aurora-A) plays an important role in the regulation of mitosis and cytokinesis. Dysregulated Aurora-A leads to mitotic faults and results in pathological conditions. No studies on Aurora-A expression in human diabetic skin tissue have been reported. In light of this, we explored the expression of Aurora-A in human diabetic skin tissue. Methods Aurora-A protein was evaluated by western blotting in 6 human diabetic skin tissue and 6 normal skin specimens. Results Increased expression of Aurora-A protein was detected in all diabetic skin tissue samples in both western blot analysis and immunohistochemical staining. However, in the case of the normal skin tissue, no bands of Aurora-A protein were detected in either the western blotting analysis or the immunohistochemical staining. Conclusions Thus far, there have been no studies on the expression of Aurora-A in diabetic skin tissue. However, we believe that oxidative DNA damage related to the expression of Aurora-A protein and Aurora-A could be involved inhuman diabetic skin tissue.

Deubiquitinase USP35 as a novel mitotic regulator via maintenance of Aurora B stability

  • Park, Jinyoung;Song, Eun Joo
    • BMB Reports
    • /
    • v.51 no.6
    • /
    • pp.261-262
    • /
    • 2018
  • Aurora B is an important kinase involved in dynamic cellular events in mitosis. Aurora B activity is controlled by several post-translational modifications (PTMs). Among them, E3 ubiquitin ligase-mediated ubiquitination plays crucial roles in controlling the relocation and degradation of Aurora B. Aurora B, ubiquitinated by different E3 ligases, moves to the exact site for its mitotic function during metaphase-anaphase transition and is then degraded for cell cycle progression at the end of mitosis. However, how the stability of Aurora B is maintained until its degradation has been poorly understood. Recently, we have found that USP35 acts as a deubiquitinating enzyme (DUB) for Aurora B and affects its stability during cell division, thus being involved in the regulation of mitosis. In this review, we discuss the USP35-mediated deubiquitination of Aurora B and the regulation of mitotic progression by USP35.

Pharmacophore Modeling and Molecular Dynamics Simulation to Find the Potent Leads for Aurora Kinase B

  • Sakkiah, Sugunadevi;Thangapandian, Sundarapandian;Kim, Yong-Seong;Lee, Keun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.869-880
    • /
    • 2012
  • Identification of the selective chemical features for Aurora-B inhibitors gained much attraction in drug discovery for the treatment of cancer. Hence to identify the Aurora-B critical features various techniques were utilized such as pharmacophore generation, virtual screening, homology modeling, molecular dynamics, and docking. Top ten hypotheses were generated for Aurora-B and Aurora-A. Among ten hypotheses, HypoB1 and HypoA1 were selected as a best hypothesis for Aurora-B and Aurora-A based on cluster analysis and ranking score, respectively. Test set result revealed that ring aromatic (RA) group in HypoB1 plays an essential role in differentiates Aurora-B from Aurora-A inhibitors. Hence, HypoB1 used as 3D query in virtual screening of databases and the hits were sorted out by applying drug-like properties and molecular docking. The molecular docking result revealed that 15 hits have shown strong hydrogen bond interactions with Ala157, Glu155, and Lys106. Hence, we proposed that HypoB1 might be a reasonable hypothesis to retrieve the structurally diverse and selective leads from various databases to inhibit Aurora-B.

IMMUNOHISTOCHEMICAL STUDY OF AURORA-2 KINASE IN THE ORAL SQUAMOUS CELL CARCINOMA (구강편평상피암종에서 Aurora-2 kinase 발현에 대한 면역조직화학적 연구)

  • Han, Se-Jin;Kim, Se-Woong;Kim, Kyung-Wook
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.32 no.2
    • /
    • pp.112-117
    • /
    • 2010
  • Aurora kinases represent a novel family of serine/threonine kinases crucial for cell cycle control. Aurora-2 kinase is mainly involved in centrosome function, mitotic entry, and spindle assembly. Aurora-2 kinase overexpression causes centrosome amplification and the formation of multipolar mitotic spindles, which leads to tumor aneuploidy and so it has been found to play an important role in tumorigenicity in many cancers such as colorectal cancer, breast cancer and cervical cancer. Hence, the goal of this study is to identify the correlation of clinicopathlogical factors and overexpression of Aurora-2 kinase in oral squamous cell carcinoma. We studied the immunohistochemical staining of Aurora-2 kinase in 20 specimens of 20 patients with oral squamous cell carcinoma and the relationships between Aurora-2 kinase over expression and each of the clinico-pathological parameters were analyzed by Pearson correlation analysis. Statistical significance was set at P < 0.05. The results were as follows. 1. In the immunohistochemical study of poorly differentiated and invasive oral squamous cell carcinoma, the high level staining of Aurora-2 kinase was observed. 2. The correlation between immunohistochemical Aurora-2 kinase expression and histopathological differentiation of specimens was significant. These findings suggest that overexpression of Aurora-2 kinase may play a important role in carcinogenesis of oral squamous cell carcinoma.

Aurora kinase A induces migration and invasion by inducing epithelial-to-mesenchymal transition in colon cancer cells

  • Hong, On-Yu;Kang, Sang Yull;Noh, Eun-Mi;Yu, Hong-Nu;Jang, Hye-Yeon;Kim, Seong-Hun;Hong, Jingyu;Chung, Eun Yong;Kim, Jong-Suk
    • BMB Reports
    • /
    • v.55 no.2
    • /
    • pp.87-91
    • /
    • 2022
  • Aurora kinase is a family of serine/threonine kinases intimately associated with mitotic progression and the development of human cancers. Studies have shown that aurora kinases are important for the protein kinase C (PKC)-induced invasion of colon cancer cells. Recent studies have shown that aurora kinase A promotes distant metastasis by inducing epithelial-to-mesenchymal transition (EMT) in colon cancer cells. However, the role of aurora kinase A in colon cancer metastasis remains unclear. In this study, we investigated the effects of aurora kinase A on PKC-induced cell invasion, migration, and EMT in human SW480 colon cancer cells. Treatment with 12-O-tetradecanoylphorbol-13-acetate (TPA) changed the expression levels of EMT markers, increasing α-SMA, vimentin, and MMP-9 expression and decreasing E-cadherin expression, with changes in cell morphology. TPA treatment induced EMT in a PKC-dependent manner. Moreover, the inhibition of aurora kinase A by siRNAs and inhibitors (reversine and VX-680) suppressed TPA-induced cell invasion, migration, and EMT in SW480 human colon cells. Inhibition of aurora kinase A blocked TPA-induced vimentin and MMP-9 expression, and decreased E-cadherin expression. Furthermore, the knockdown of aurora kinase A decreased the transcriptional activity of NF-κB and AP-1 in PKC-stimulated SW480 cells. These findings indicate that aurora kinase A induces migration and invasion by inducing EMT in SW480 colon cancer cells. To the best of our knowledge, this is the first study that showed aurora kinase A is a key molecule in PKC-induced metastasis in colon cancer cells.

Aurora-A kinase-inactive mutants disrupt the interaction with Ajuba and cause defects in mitotic spindle formation and G2/M phase arrest in HeLa cells

  • Bai, Meirong;Ni, Jun;Shen, Suqin;Huang, Qiang;Wu, Jiaxue;Le, Yichen;Yu, Long
    • BMB Reports
    • /
    • v.47 no.11
    • /
    • pp.631-636
    • /
    • 2014
  • Aurora-A is a centrosome-localized serine/threonine kinase that is overexpressed in multiple human cancers. We previously reported an intramolecular inhibitory regulation of Aurora-A between its N-terminal regulatory domain (Nt, amino acids [aa] 1-128) and the C-terminal catalytic domain (Cd, aa 129-403). Here, we demonstrate that although both Aurora-A mutants (AurA-K250G and AurA-D294G/Y295G) lacked interactions between the Nt and Cd, they also failed to interact with Ajuba, an essential activator of Aurora-A, leading to loss of kinase activity. Additionally, overexpression of either of the mutants resulted in centrosome amplification and mitotic spindle formation defects. Both mutants were also able to cause G2/M arrest and apoptosis. These results indicate that both K250 and D294/Y295 are critical for direct interaction between Aurora-A and Ajuba and the function of the Aurora-A complex in cell cycle progression.

Robust Speech Detection Using the AURORA Front-End Noise Reduction Algorithm under Telephone Channel Environments (AURORA 잡음 처리 알고리즘을 이용한 전화망 환경에서의 강인한 음성 검출)

  • Suh Youngjoo;Ji Mikyong;Kim Hoi-Rin
    • MALSORI
    • /
    • no.48
    • /
    • pp.155-173
    • /
    • 2003
  • This paper proposes a noise reduction-based speech detection method under telephone channel environments. We adopt the AURORA front-end noise reduction algorithm based on the two-stage mel-warped Wiener filter approach as a preprocessor for the frequency domain speech detector. The speech detector utilizes mel filter-bank based useful band energies as its feature parameters. The preprocessor firstly removes the adverse noise components on the incoming noisy speech signals and the speech detector at the next stage detects proper speech regions for the noise-reduced speech signals. Experimental results show that the proposed noise reduction-based speech detection method is very effective in improving not only the performance of the speech detector but also that of the subsequent speech recognizer.

  • PDF

An Implementation of the Baseline Recognizer Using the Segmental K-means Algorithm for the Noisy Speech Recognition Using the Aurora DB (Aurora DB를 이용한 잡음 음성 인식실험을 위한 Segmental K-means 훈련 방식의 기반인식기의 구현)

  • Kim Hee-Keun;Chung Young-Joo
    • MALSORI
    • /
    • no.57
    • /
    • pp.113-122
    • /
    • 2006
  • Recently, many studies have been done for speech recognition in noisy environments. Particularly, the Aurora DB has been built as the common database for comparing the various feature extraction schemes. However, in general, the recognition models as well as the features have to be modified for effective noisy speech recognition. As the structure of the HTK is very complex, it is not easy to modify, the recognition engine. In this paper, we implemented a baseline recognizer based on the segmental K-means algorithm whose performance is comparable to the HTK in spite of the simplicity in its implementation.

  • PDF

The Aurora Kinase Inhibitor CYC116 Promotes the Maturation of Cardiomyocytes Derived from Human Pluripotent Stem Cells

  • Sijia, Ji;Wanzhi, Tu;Chenwen, Huang;Ziyang, Chen;Xinyue, Ren;Bingqing, He;Xiaoyan, Ding;Yuelei, Chen;Xin, Xie
    • Molecules and Cells
    • /
    • v.45 no.12
    • /
    • pp.923-934
    • /
    • 2022
  • Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have great potential in applications such as regenerative medicine, cardiac disease modeling, and in vitro drug evaluation. However, hPSC-CMs are immature, which limits their applications. During development, the maturation of CMs is accompanied by a decline in their proliferative capacity. This phenomenon suggests that regulating the cell cycle may facilitate the maturation of hPSC-CMs. Aurora kinases are essential kinases that regulate the cell cycle, the role of which is not well studied in hPSC-CM maturation. Here, we demonstrate that CYC116, an inhibitor of Aurora kinases, significantly promotes the maturation of CMs derived from both human embryonic stem cells (H1 and H9) and iPSCs (induced PSCs) (UC013), resulting in increased expression of genes related to cardiomyocyte function, better organization of the sarcomere, increased sarcomere length, increased number of mitochondria, and enhanced physiological function of the cells. In addition, a number of other Aurora kinase inhibitors have also been found to promote the maturation of hPSC-CMs. Our data suggest that blocking aurora kinase activity and regulating cell cycle progression may promote the maturation of hPSC-CMs.

Effect of MLN8237, a Novel Aurora A Kinase Inhibitor, on the Spontaneous Fragmentation of Ovulated Mouse Oocytes

  • Park, Ji-Hun;Choi, Tae-Saeng
    • Reproductive and Developmental Biology
    • /
    • v.35 no.4
    • /
    • pp.499-502
    • /
    • 2011
  • Aurora A kinase is a mitotic serine/threonine kinase whose proposed functions include the maturation of centrosomes, G2/M transition, alignment of chromosomes at metaphase, and cytokinesis. In this study, we investigated the effect of MLN8237, an aurora A kinase inhibitor, on the postovulatory aging of oocytes based on the frequency of oocyte fragmentation, cdk1 kinase activity, and cyclin B degradation. The fragmentation of ovulated oocytes during prolonged culture was inhibited by treatment with MLN8237 in a concentration-dependent manner. The frequency of fragmented oocytes was significantly lower in oocytes treated with 2 ${\mu}M$ MLN8237 (13%) than in control oocytes (64%) after two days of culture. Most of the control (non-fragmented) oocytes (91%) were activated after two days of culture. In comparison, only 22% of the MLN8237-treated oocytes were activated; the rest of the oocytes (78%) were still in metaphase with an abnormal spindle and dispersed chromosomes. Next, cdk1 activity and the level of cyclin B were examined. The level of cyclin B and cdk1 activity in MLN8237-treated oocytes were nearly equal to those in control oocytes. Our results indicate that MLN8237 inhibited the fragmentation of ovulated oocytes during prolonged culture, although it blocked the spontaneous decrease in activity of cdk1 and degradation of cyclin B. This mechanism of inhibition is different from that in oocytes treated with nocodazole, which have high levels of cdk1 activity and cyclin B.