• 제목/요약/키워드: Augmented Plasticity

검색결과 10건 처리시간 0.028초

일반적인 금형면에서의 접촉탐색과 3차원 박판성형에의 응용 (A General Tool Surface Contact Search and its Application to 3-D Sheet Forming)

  • 서의권;심현보
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 춘계학술대회논문집
    • /
    • pp.121-124
    • /
    • 1997
  • In the present study, a general tool surface contac search ad check algorithm is proposed. A general tool surface is described by triangular FE mesh. To check a proposed algorithm, clover cup and L-shape cup deep drawing processes are calculated. The elastic-plastic FEM using SEAM (Shear Energy Augmented Membrane) element is adapted for numerical stability.

  • PDF

증강가소성: 물리적 오브젝트에 형태적 편집가능성 부여하기 (Augmented Plasticity: Giving Morphological Editability to Physical Objects)

  • 이우훈;강혜경
    • 디자인학연구
    • /
    • 제19권1호
    • /
    • pp.225-234
    • /
    • 2006
  • 디자인과정 후반에서 제품 디자이너는 전경 형태(디테일 디자인)에 대한 다양한 아이디어를 스케치하고 배경형태(기본 조형)와의 수많은 조합을 테스트하게 된다. 이 때 디자이너들은 실제 제품과 거의 동일한 하이피델리티(high fidelity)의 디자인 모형을 제작해 세밀한 부분까지 점검하게 된다. 하지만 디자인 모형 제작에는 적지 않은 시간과 경비가 소요되기 때문에 배경형태와 전경 형태에 대한 다양한 조합을 모두 평가해 보는 것은 사실상 불가능하다고 할 수 있다. 또한 물리적으로 구현된 아이디어는 화면 속의 디지털 모형과는 달리 편집가능성이 부족하기 때문에 '디자인과 평가'라는 순환적 작업과정이 제한적으로 이루어질 수밖에 없다. 이런 문제를 해결하기 위해 본 연구는 증강현실기술을 응용하여 물리적 오브젝트에 디지털적으로 조형적 편집가능성을 증강시킬 수 있는 증가가소성의 개념을 제안하고 이를 디지털스킨으로 구체화하였다. 디지털스킨은 ARToolKit의 비주얼 마커를 이용해 오브젝트 표면의 위치와 방향을 트래 킹하고 차분렌더링기법을 활용하여 변형된 표면을 이음매 없이 덧붙일 수 있다. 본 연구는 구현된 디지털스킨을 제품 디테일과 부분수정 디자인 그리고 디자인 소재탐색 작업에 대한 적용해 보았다. 그 결과 디자인과정 후반에서 효과적으로 디자인 아이디어를 구현하고 테스트하는데 상당한 도움을 줄 수 있을 것으로 평가되었다.

  • PDF

굽힘 첨가 박막요소에 의한 알루미늄 샌드위치 판재 성형공정의 단면 유한요소 해석 (Sectional Finite Element Analysis of Forming Process of Aluminum Sandwich Sheet by Bending Augmented Membrane Elements)

  • 이재경;금영탁;유용문;이명호
    • 소성∙가공
    • /
    • 제10권2호
    • /
    • pp.91-100
    • /
    • 2001
  • A sectional FEA program is developed lot analyzing forming processes of sandwich sheets, which are intensively used recently as a lightweight material of an automobile body. The aluminum sandwich sheet consists of two aluminum skins and a polyprophylen core in between. The aluminum sandwich sheet is dominantly effected by the bending effects in small radius of curvature, so that an appropriate description of bending effects is required to analyze the forming processes. For the evaluation of bending effects, the bending equivalent forces are calculated from the bending moment computed using the curvature of the tool and are added to the membrane stretch forces. To verify the validity of the developed program the sectional FEA results in stretch/draw forming Processes of a square cup and draw forming Processes of an outer hood panel were compared with the measurements.

  • PDF

정사각형 컵 디프드로잉의 탄소성 유한 요소해석 (An Elastic-Plastic FE Analysis of a Square Cup Deep Drawing Process)

  • 서의권;심현보
    • 소성∙가공
    • /
    • 제5권1호
    • /
    • pp.8-17
    • /
    • 1996
  • In the present study SEAM (Shear Energy Augmented Membrane) elements have been devel-oped. Maintaining the numerical efficiency of conventional membrane elements the effect of out-of-plane deformation (transverse shear deformation) has been incorporated for the purpose of computational stabilization without introducing additional degrees of freedom. Computations are carried out for the deep drawings of square cup to check the validity and the effectiveness of proposed SEAM elements. The computational results are compared with both the existing results. And the effects of process variables like initial sheet thickness punch & die round and clearance are checked

  • PDF

알루미늄 합금 박판 스탬핑 공정의 단면 성형 해석 (Sectonal Forming Analysis of Stamping Processes of Aluminum Alloy Sheet Metals)

  • 이광병;이승열;금영탁
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1996년도 추계학술대회논문집
    • /
    • pp.38-47
    • /
    • 1996
  • Sectional analysis program for plane strain or axisymmetric geometry of aluminum alloy sheet metals was developed. For modeling the anomalous behavior of aluminum alloy, Barlat's strain rate potential and Hill's 1990 non-quadratic yield theory arranged under the plane stress assumption were employed. 2-D rigid-viscoplastic FEM formulation based on the bending-augmented membrane theory was derived, solving simultaneously force equilibrium as well as non-penetration condition. Isotropic hardening law was also assumed for yielding behavior. To verify the validity and availability of the developed program, 2-D stretch/draw forming process for plane strain geometry and cylindrical cup deep drawing process for axisymmetric geometry were simulated.

  • PDF

축대칭 다단계 디프드로잉 공정의 유한요소해석 (Finite Element Analysis of Axisymmetric Multi-Stage Deep Drawing Processes)

  • 윤정환;유동진;양동열;김석관
    • 소성∙가공
    • /
    • 제3권4호
    • /
    • pp.468-481
    • /
    • 1994
  • Mathematical description of arbitrarily-shaped tool surface are introduced by parametric patch approaches along with the related contact search algorithm. In order to maintain the advantages of membrane elements and to incoporate the bending effect, a BEAM(Bending Energy Augmented Membrane) element is proposed. Computation are carried out for some complex axisymmetric multi-stage deep drawing to verify the validity and the effectiveness of the proposed method.

  • PDF

작업치료 임상에서 뇌졸중 환자의 상지기능 향상을 위한 가상현실 치료의 유용성에 관한 고찰 (Feasibility of Virtual Reality for Enhancement of Upper Extremity Function Post Stroke)

  • 권재성;양노열
    • 재활치료과학
    • /
    • 제1권2호
    • /
    • pp.35-40
    • /
    • 2012
  • 본 연구에서는 가상현실 치료가 뇌졸중 환자의 뇌 가소성을 동반한 상지기능 향상에 미치는 영향을 알아보고 강도 높은 가상현실 훈련이 뇌졸중 환자의 상지기능 향상을 위한 집중치료로써 임상적으로 유용한 훈련인지 알아보고자 하였다. 뇌졸중 환자에게 있어 사용-의존성 즉 운동 강도와 반복은 마비 측 사지의 운동 기능향상에 중요한 치료적 요소이다. 최근에는 상지의 지속적 사용을 통한 뇌-가소성에 기반한 변화를 유도할 수 있는 치료방법으로 가상현실 치료가 대두되었다. 가상현실 치료는 재활 임상환경에서 운동기능 향상을 위한 훈련강도와 반복을 제공할 수 있는 기술적 방법으로 채택되기 시작하였다. 특히 뇌졸중 환자의 상지 기능을 향상시키기 위한 치료적 유용성 측면에서는 강도 높은 반복적 훈련이 가능하다는 것과 게임 같은 형식으로 높은 동기부여가 가능하다는 것, 실제 수행을 통한 다중감각적 피드백 제공, 상호작용이 가능한 과제지향적 치료가 가능하다는 장점을 가지고 있다. 임상 환경에서 작업치료와 더불어 부가적으로 가상현실 치료를 실시하는 것은 뇌졸중 환자의 상지 기능회복을 더욱 촉진할 것이다.

The stick-slip decomposition method for modeling large-deformation Coulomb frictional contact

  • Amaireh, Layla. K.;Haikal, Ghadir
    • Coupled systems mechanics
    • /
    • 제7권5호
    • /
    • pp.583-610
    • /
    • 2018
  • This paper discusses the issues associated with modeling frictional contact between solid bodies undergoing large deformations. The most common model for friction on contact interfaces in solid mechanics is the Coulomb friction model, in which two distinct responses are possible: stick and slip. Handling the transition between these two phases computationally has been a source of algorithmic instability, lack of convergence and non-unique solutions, particularly in the presence of large deformations. Most computational models for frictional contact have used penalty or updated Lagrangian approaches to enforce frictional contact conditions. These two approaches, however, present some computational challenges due to conditioning issues in penalty-type implementations and the iterative nature of the updated Lagrangian formulation, which, particularly in large simulations, may lead to relatively slow convergence. Alternatively, a plasticity-inspired implementation of frictional contact has been shown to handle the stick-slip conditions in a local, algorithmically efficient manner that substantially reduces computational cost and successfully avoids the issues of instability and lack of convergence often reported with other methods (Laursen and Simo 1993). The formulation of this approach, however, has been limited to the small deformations realm, a fact that severely limited its application to contact problems where large deformations are expected. In this paper, we present an algorithmically consistent formulation of this method that preserves its key advantages, while extending its application to the realm of large-deformation contact problems. We show that the method produces results similar to the augmented Lagrangian formulation at a reduced computational cost.

A New Perspective on the Heterogeneity of Cancer Glycolysis

  • Neugent, Michael L.;Goodwin, Justin;Sankaranarayanan, Ishwarya;Yetkin, Celal Emre;Hsieh, Meng-Hsiung;Kim, Jung-whan
    • Biomolecules & Therapeutics
    • /
    • 제26권1호
    • /
    • pp.10-18
    • /
    • 2018
  • Tumors are dynamic metabolic systems which highly augmented metabolic fluxes and nutrient needs to support cellular proliferation and physiological function. For many years, a central hallmark of tumor metabolism has emphasized a uniformly elevated aerobic glycolysis as a critical feature of tumorigenecity. This led to extensive efforts of targeting glycolysis in human cancers. However, clinical attempts to target glycolysis and glucose metabolism have proven to be challenging. Recent advancements revealing a high degree of metabolic heterogeneity and plasticity embedded among various human cancers may paint a new picture of metabolic targeting for cancer therapies with a renewed interest in glucose metabolism. In this review, we will discuss diverse oncogenic and molecular alterations that drive distinct and heterogeneous glucose metabolism in cancers. We will also discuss a new perspective on how aberrantly altered glycolysis in response to oncogenic signaling is further influenced and remodeled by dynamic metabolic interaction with surrounding tumor-associated stromal cells.

Current understanding of nociplastic pain

  • Yeong-Min Yoo;Kyung-Hoon Kim
    • The Korean Journal of Pain
    • /
    • 제37권2호
    • /
    • pp.107-118
    • /
    • 2024
  • Nociplastic pain by the "International Association for the Study of Pain" is defined as pain that arises from altered nociception despite no clear evidence of nociceptive or neuropathic pain. Augmented central nervous system pain and sensory processing with altered pain modulation are suggested to be the mechanism of nociplastic pain. Clinical criteria for possible nociplastic pain affecting somatic structures include chronic regional pain and evoked pain hypersensitivity including allodynia with after-sensation. In addition to possible nociplastic pain, clinical criteria for probable nociplastic pain are pain hypersensitivity in the region of pain to non-noxious stimuli and presence of comorbidity such as generalized symptoms with sleep disturbance, fatigue, or cognitive problems with hypersensitivity of special senses. Criteria for definitive nociplastic pain is not determined yet. Eight specific disorders related to central sensitization are suggested to be restless leg syndrome, chronic fatigue syndrome, fibromyalgia, temporomandibular disorder, migraine or tension headache, irritable bowel syndrome, multiple chemical sensitivities, and whiplash injury; non-specific emotional disorders related to central sensitization include anxiety or panic attack and depression. These central sensitization pain syndromes are overlapped to previous functional pain syndromes which are unlike organic pain syndromes and have emotional components. Therefore, nociplastic pain can be understood as chronic altered nociception related to central sensitization including both sensory components with nociceptive and/or neuropathic pain and emotional components. Nociplastic pain may be developed to explain unexplained chronic pain beyond tissue damage or pathology regardless of its origin from nociceptive, neuropathic, emotional, or mixed pain components.