• Title/Summary/Keyword: Augmented Plasticity

Search Result 10, Processing Time 0.017 seconds

A General Tool Surface Contact Search and its Application to 3-D Sheet Forming (일반적인 금형면에서의 접촉탐색과 3차원 박판성형에의 응용)

  • 서의권;심현보
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.121-124
    • /
    • 1997
  • In the present study, a general tool surface contac search ad check algorithm is proposed. A general tool surface is described by triangular FE mesh. To check a proposed algorithm, clover cup and L-shape cup deep drawing processes are calculated. The elastic-plastic FEM using SEAM (Shear Energy Augmented Membrane) element is adapted for numerical stability.

  • PDF

Augmented Plasticity: Giving Morphological Editability to Physical Objects (증강가소성: 물리적 오브젝트에 형태적 편집가능성 부여하기)

  • Lee, Woo-Hun;Kang, Hye-Kyoung
    • Archives of design research
    • /
    • v.19 no.1 s.63
    • /
    • pp.225-234
    • /
    • 2006
  • Product designers sketch various ideas of foreground figures(detail design) onto background figures(basic form) and evaluate numerous combinations of them in the late stages of design process. Designers have to test their ideas elaborately with a high-fidelity physical model that looks like a real product. However, due to the requirements of time and expense in making high-fidelity design models, it is impossible to evaluate such a number of combinatorial solutions of background and foreground figures. Contrary to digital models, physical design models are not easily modifiable and so designers cannot easily develope ideas through iterative design-evaluation process. To address these problems, we proposed a new concept 'Augmented Plasticity' that gives morphological editability to a rigid physical object using Augmented Reality technology and implemented the idea as Digital Skin system. Digital Skin system figures out the position and orientation of object surface with ARToolKit visual marker and superimposes a deformed surface image seamlessly using differential rendering method. We tried to apply Digital Skin system to detail design, redesign of product, and material exploration task. In consequence, it was found that Digital Skin system has potential to allow designers to implement and test their ideas very efficiently in the late stages of design process.

  • PDF

Sectional Finite Element Analysis of Forming Process of Aluminum Sandwich Sheet by Bending Augmented Membrane Elements (굽힘 첨가 박막요소에 의한 알루미늄 샌드위치 판재 성형공정의 단면 유한요소 해석)

  • 이재경;금영탁;유용문;이명호
    • Transactions of Materials Processing
    • /
    • v.10 no.2
    • /
    • pp.91-100
    • /
    • 2001
  • A sectional FEA program is developed lot analyzing forming processes of sandwich sheets, which are intensively used recently as a lightweight material of an automobile body. The aluminum sandwich sheet consists of two aluminum skins and a polyprophylen core in between. The aluminum sandwich sheet is dominantly effected by the bending effects in small radius of curvature, so that an appropriate description of bending effects is required to analyze the forming processes. For the evaluation of bending effects, the bending equivalent forces are calculated from the bending moment computed using the curvature of the tool and are added to the membrane stretch forces. To verify the validity of the developed program the sectional FEA results in stretch/draw forming Processes of a square cup and draw forming Processes of an outer hood panel were compared with the measurements.

  • PDF

An Elastic-Plastic FE Analysis of a Square Cup Deep Drawing Process (정사각형 컵 디프드로잉의 탄소성 유한 요소해석)

  • 서의권;심현보
    • Transactions of Materials Processing
    • /
    • v.5 no.1
    • /
    • pp.8-17
    • /
    • 1996
  • In the present study SEAM (Shear Energy Augmented Membrane) elements have been devel-oped. Maintaining the numerical efficiency of conventional membrane elements the effect of out-of-plane deformation (transverse shear deformation) has been incorporated for the purpose of computational stabilization without introducing additional degrees of freedom. Computations are carried out for the deep drawings of square cup to check the validity and the effectiveness of proposed SEAM elements. The computational results are compared with both the existing results. And the effects of process variables like initial sheet thickness punch & die round and clearance are checked

  • PDF

Sectonal Forming Analysis of Stamping Processes of Aluminum Alloy Sheet Metals (알루미늄 합금 박판 스탬핑 공정의 단면 성형 해석)

  • 이광병;이승열;금영탁
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.10a
    • /
    • pp.38-47
    • /
    • 1996
  • Sectional analysis program for plane strain or axisymmetric geometry of aluminum alloy sheet metals was developed. For modeling the anomalous behavior of aluminum alloy, Barlat's strain rate potential and Hill's 1990 non-quadratic yield theory arranged under the plane stress assumption were employed. 2-D rigid-viscoplastic FEM formulation based on the bending-augmented membrane theory was derived, solving simultaneously force equilibrium as well as non-penetration condition. Isotropic hardening law was also assumed for yielding behavior. To verify the validity and availability of the developed program, 2-D stretch/draw forming process for plane strain geometry and cylindrical cup deep drawing process for axisymmetric geometry were simulated.

  • PDF

Finite Element Analysis of Axisymmetric Multi-Stage Deep Drawing Processes (축대칭 다단계 디프드로잉 공정의 유한요소해석)

  • 윤정환;유동진;양동열;김석관
    • Transactions of Materials Processing
    • /
    • v.3 no.4
    • /
    • pp.468-481
    • /
    • 1994
  • Mathematical description of arbitrarily-shaped tool surface are introduced by parametric patch approaches along with the related contact search algorithm. In order to maintain the advantages of membrane elements and to incoporate the bending effect, a BEAM(Bending Energy Augmented Membrane) element is proposed. Computation are carried out for some complex axisymmetric multi-stage deep drawing to verify the validity and the effectiveness of the proposed method.

  • PDF

Feasibility of Virtual Reality for Enhancement of Upper Extremity Function Post Stroke (작업치료 임상에서 뇌졸중 환자의 상지기능 향상을 위한 가상현실 치료의 유용성에 관한 고찰)

  • Kwon, Jae-Sung;Yang, No-Yul
    • Therapeutic Science for Rehabilitation
    • /
    • v.1 no.2
    • /
    • pp.35-40
    • /
    • 2012
  • The purpose of this review was to investigate feasibility of intensive virtual reality training to improve upper extremity function with brain plasticity of individuals with stroke through the literature. The recovery of the paretic upper extremity depends on regularity and intensity of training as use-dependent plasticity. In resent, virtual reality program has been widely used in the occupational therapy field of augmented stroke rehabilitation. There is a growing body of evidence that virtual reality training of the paretic extremity induces brain plasticity associated with motor improvement. In terms of therapeutic feasibility to improve paretic upper extremity, recent research has explored several important factors of virtual reality training for recovery of upper extremity motor function. These factors include high repetition intensity, high motivation like type of game, enhanced multisensory feedback regarding performance, and interactive task-oriented training. Therefore, occupational therapy combined with intensive and repetitive virtual reality training will enhance recovery of upper extremity motor function after stroke.

The stick-slip decomposition method for modeling large-deformation Coulomb frictional contact

  • Amaireh, Layla. K.;Haikal, Ghadir
    • Coupled systems mechanics
    • /
    • v.7 no.5
    • /
    • pp.583-610
    • /
    • 2018
  • This paper discusses the issues associated with modeling frictional contact between solid bodies undergoing large deformations. The most common model for friction on contact interfaces in solid mechanics is the Coulomb friction model, in which two distinct responses are possible: stick and slip. Handling the transition between these two phases computationally has been a source of algorithmic instability, lack of convergence and non-unique solutions, particularly in the presence of large deformations. Most computational models for frictional contact have used penalty or updated Lagrangian approaches to enforce frictional contact conditions. These two approaches, however, present some computational challenges due to conditioning issues in penalty-type implementations and the iterative nature of the updated Lagrangian formulation, which, particularly in large simulations, may lead to relatively slow convergence. Alternatively, a plasticity-inspired implementation of frictional contact has been shown to handle the stick-slip conditions in a local, algorithmically efficient manner that substantially reduces computational cost and successfully avoids the issues of instability and lack of convergence often reported with other methods (Laursen and Simo 1993). The formulation of this approach, however, has been limited to the small deformations realm, a fact that severely limited its application to contact problems where large deformations are expected. In this paper, we present an algorithmically consistent formulation of this method that preserves its key advantages, while extending its application to the realm of large-deformation contact problems. We show that the method produces results similar to the augmented Lagrangian formulation at a reduced computational cost.

A New Perspective on the Heterogeneity of Cancer Glycolysis

  • Neugent, Michael L.;Goodwin, Justin;Sankaranarayanan, Ishwarya;Yetkin, Celal Emre;Hsieh, Meng-Hsiung;Kim, Jung-whan
    • Biomolecules & Therapeutics
    • /
    • v.26 no.1
    • /
    • pp.10-18
    • /
    • 2018
  • Tumors are dynamic metabolic systems which highly augmented metabolic fluxes and nutrient needs to support cellular proliferation and physiological function. For many years, a central hallmark of tumor metabolism has emphasized a uniformly elevated aerobic glycolysis as a critical feature of tumorigenecity. This led to extensive efforts of targeting glycolysis in human cancers. However, clinical attempts to target glycolysis and glucose metabolism have proven to be challenging. Recent advancements revealing a high degree of metabolic heterogeneity and plasticity embedded among various human cancers may paint a new picture of metabolic targeting for cancer therapies with a renewed interest in glucose metabolism. In this review, we will discuss diverse oncogenic and molecular alterations that drive distinct and heterogeneous glucose metabolism in cancers. We will also discuss a new perspective on how aberrantly altered glycolysis in response to oncogenic signaling is further influenced and remodeled by dynamic metabolic interaction with surrounding tumor-associated stromal cells.

Current understanding of nociplastic pain

  • Yeong-Min Yoo;Kyung-Hoon Kim
    • The Korean Journal of Pain
    • /
    • v.37 no.2
    • /
    • pp.107-118
    • /
    • 2024
  • Nociplastic pain by the "International Association for the Study of Pain" is defined as pain that arises from altered nociception despite no clear evidence of nociceptive or neuropathic pain. Augmented central nervous system pain and sensory processing with altered pain modulation are suggested to be the mechanism of nociplastic pain. Clinical criteria for possible nociplastic pain affecting somatic structures include chronic regional pain and evoked pain hypersensitivity including allodynia with after-sensation. In addition to possible nociplastic pain, clinical criteria for probable nociplastic pain are pain hypersensitivity in the region of pain to non-noxious stimuli and presence of comorbidity such as generalized symptoms with sleep disturbance, fatigue, or cognitive problems with hypersensitivity of special senses. Criteria for definitive nociplastic pain is not determined yet. Eight specific disorders related to central sensitization are suggested to be restless leg syndrome, chronic fatigue syndrome, fibromyalgia, temporomandibular disorder, migraine or tension headache, irritable bowel syndrome, multiple chemical sensitivities, and whiplash injury; non-specific emotional disorders related to central sensitization include anxiety or panic attack and depression. These central sensitization pain syndromes are overlapped to previous functional pain syndromes which are unlike organic pain syndromes and have emotional components. Therefore, nociplastic pain can be understood as chronic altered nociception related to central sensitization including both sensory components with nociceptive and/or neuropathic pain and emotional components. Nociplastic pain may be developed to explain unexplained chronic pain beyond tissue damage or pathology regardless of its origin from nociceptive, neuropathic, emotional, or mixed pain components.