• 제목/요약/키워드: Au-nanoparticle

검색결과 121건 처리시간 0.081초

PEDOT:PSS 정공 수송층에 금 나노입자를 첨가한 유기태양전지의 제작 및 특성 연구 (Fabrication and Characterization of Organic Solar Cells with Gold Nanoparticles in PEDOT:PSS Hole Transport Layer)

  • 김성호;최재영;장호정
    • 마이크로전자및패키징학회지
    • /
    • 제20권2호
    • /
    • pp.39-46
    • /
    • 2013
  • 본 논문은 캐리어의 이동도 및 전도도를 개선하고, 흡수된 빛의 이동 경로를 증가시켜 광흡수도를 높이기 위하여 정공 수송층 재료에 금 나노입자를 첨가하여 유기태양전지를 제작하였다. 광활성층으로는 P3HT와 PCBM의 bulk-heterojunction 구조를 사용하였다. 유기태양전지에서 금 나노입자를 첨가한 정공 수송층의 효과를 관찰하기 위하여 금 나노입자의 첨가량(0, 0.5, 1.0 wt% Au)과 열처리온도(상온, $110^{\circ}C$, $130^{\circ}C$, $150^{\circ}C$)에 따른 광학적 전기적 특성을 조사하였다. 최대전력변환효율을 갖는 유기태양전지는 0.5 wt% 금 나노입자 첨가한 소자와 $130^{\circ}C$에서 열처리한 소자에서 관찰되었다. 이때 유기태양전지의 전기적 특성은 금 나노입자를 0.5 wt% 첨가한 경우, 단락전류밀도, 곡선인자 및 전력변환효율은 각각 10.2 $mA/cm^2$, 55.8% 및 3.1%로 나타났으며, $130^{\circ}C$에서 열처리한 경우, 12.0 $mA/cm^2$의 단락전류밀도와 64.2%의 곡선인자를 가지며, 4.0%의 전력변환효율이 관찰되었다.

Characteristics of photo-thermal reduced Cu film using photographic flash light

  • Kim, Minha;Kim, Donguk;Hwang, Soohyun;Lee, Jaehyeong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.293.1-293.1
    • /
    • 2016
  • Various materials including conductive, dielectric, and semi-conductive materials, constitute suitable candidates for printed electronics. Metal nanoparticles (e.g. Ag, Cu, Ni, Au) are typically used in conductive ink. However, easily oxidized metals, such as Cu, must be processed at low temperatures and as such, photonic sintering has gained significant attention as a new low-temperature processing method. This method is based on the principle of selective heating of a strongly absorbent film, without light-source-induced damage to the transparent substrate. However, Cu nanoparticles used in inks are susceptible to the growth of a native copper-oxide layer on their surface. Copper-oxide-nanoparticle ink subjected to a reduction mechanism has therefore been introduced in an attempt to achieve long-term stability and reliability. In this work, a flash-light sintering process was used for the reduction of an inkjet-printed Cu(II)O thin film to a Cu film. Using a photographic lighting instrument, the intensity of the light (or intense pulse light) was controlled by the charged power (Ws). The resulting changes in the structure, as well as the optical and electrical properties of the light-irradiated Cu(II)O films, were investigated. A Cu thin film was obtained from Cu(II)O via photo-thermal reduction at 2500 Ws. More importantly, at one shot of 3000 Ws, a low sheet resistance value ($0.2527{\Omega}/sq.$) and a high resistivity (${\sim}5.05-6.32{\times}10^{-8}{\Omega}m$), which was ~3.0-3.8 times that of bulk Cu was achieved for the ~200-250-nm-thick film.

  • PDF

Facile Synthesis of Pt Nanoparticle and Graphene Composite Materials: Comparison of Electrocatalytic Activity with Analogous CNT Composite

  • Lee, Jihye;Jang, Ho Young;Jung, Insub;Yoon, Yeoheung;Jang, Hee-Jeong;Lee, Hyoyoung;Park, Sungho
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권7호
    • /
    • pp.1973-1978
    • /
    • 2014
  • Here, we present a facile method to synthesize Pt nanoparticles (NPs) and graphene composite materials (Pt/G) via vacuum filtration. Anodic aluminum oxide (AAO) templates were used to separate Pt/G composite and liquid phase. This method can be used to easily tune the mass ratio of Pt NPs and graphene. Pt NPs, graphene, and carbon nanotubes (CNTs) as building blocks were characterized by a variety of techniques such as scanning electron microscopy, UV-Vis spectroscopy, and Raman spectroscopy. We compared the electrocatalytic activities of Pt/G with Pt NP and CNT films (Pt/CNT) by cyclic voltammetry (CV), CO oxidation, and methanol oxidation. Pt/G was much more stable than pure Pt films. Also, Pt/G had better electrochemical activity, CO tolerance and methanol oxidation than Pt/CNT loaded with the same amount of Pt NPs due to the better dispersion of Pt NPs on graphene flakes without aggregation. We further synthesized Au@Pt disk/G and Pt nanorods/G to determine if our synthetic method can be applied to other NP shapes such as nanodisks and nanorods, for further electrocatalysis studies.

나노입자 마스크를 이용하여 제작한 초소수성 마이크로-나노 혼성구조 (Fabrication of Superhydrophobic Micro-Nano Hybrid Structures by Reactive Ion Etching with Au Nanoparticle Masks)

  • 이초연;윤석본;장건익;윤완수
    • 한국진공학회지
    • /
    • 제19권4호
    • /
    • pp.300-306
    • /
    • 2010
  • 소수성 고분자를 사용하여 제작한 마이크로구조에 금 나노입자를 마스크로 이용하는 반응성이온식각(RIE: Reactive Ion Etching)을 적용하여 초소수성을 갖는 마이크로-나노 혼성구조를 제작하였다. 소수성 고분자로는 PFPE (perfluoropolyether bisurethane methacrylate)를 사용하였으며 마이크로 단일구조는 PDMS (polydimethylsiloxane) 몰드를 사용하는 스탬핑 방식으로 제작하였다. 다양한 형태로 제작한 PFPE 마이크로 단일구조와 마이크로-나노 혼성구조의 표면 접촉각을 측정하여 표면 미세구조에 따른 소수성의 변화를 관찰하였다. 마이크로 단일구조의 경우 접촉각은 안정적인 값을 보이지 못하였으나 단일 구조에 나노입자를 사용한 식각을 적용해 나노구조가 형성됨에 따라 $150^{\circ}$ 이상의 접촉각을 갖는 초소수성 표면이 매우 높은 재현성으로 용이하게 형성되었다.

Fabrication of Flexible Surface-enhanced Raman-Active Nanostructured Substrates Using Soft-Lithography

  • 박지윤;장석진;여종석
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.411-411
    • /
    • 2012
  • Over the recent years, surface enhanced Raman spectroscopy (SERS) has dramatically grown as a label-free detecting technique with the high level of selectivity and sensitivity. Conventional SERS-active nanostructured layers have been deposited or patterned on rigid substrates such as silicon wafers and glass slides. Such devices fabricated on a flexible platform may offer additional functionalities and potential applications. For example, flexible SERS-active substrates can be integrated into microfluidic diagnostic devices with round-shaped micro-channel, which has large surface area compared to the area of flat SERS-active substrates so that we may anticipate high sensitivity in a conformable device form. We demonstrate fabrication of flexible SERS-active nanostructured substrates based on soft-lithography for simple, low-cost processing. The SERS-active nanostructured substrates are fabricated using conventional Si fabrication process and inkjet printing methods. A Si mold is patterned by photolithography with an average height of 700 nm and an average pitch of 200 nm. Polydimethylsiloxane (PDMS), a mixture of Sylgard 184 elastomer and curing agnet (wt/wt = 10:1), is poured onto the mold that is coated with trichlorosilane for separating the PDMS easily from the mold. Then, the nano-pattern is transferred to the thin PDMS substrates. The soft lithographic methods enable the SERS-active nanostructured substrates to be repeatedly replicated. Silver layer is physically deposited on the PDMS. Then, gold nanoparticle (AuNP) inks are applied on the nanostructured PDMS using inkjet printer (Dimatix DMP 2831) to deposit AuNPs on the substrates. The characteristics of SERS-active substrates are measured; topology is provided by atomic force microscope (AFM, Park Systems XE-100) and Raman spectra are collected by Raman spectroscopy (Horiba LabRAM ARAMIS Spectrometer). We anticipate that the results may open up various possibilities of applying flexible platform to highly sensitive Raman detection.

  • PDF

HEMA와 금 및 은 나노입자를 포함한 고분자의 합성 및 콘택트렌즈로의 응용 (Synthesis of a Polymer Containing HEMA and Gold and Silver Nanoparticles and its Application in Contact Lenses)

  • 예기훈;김태훈;성아영
    • 대한화학회지
    • /
    • 제54권2호
    • /
    • pp.228-233
    • /
    • 2010
  • 최근 금(Au)과 은(Ag) 나노입자는 항균성의 특징으로 다양한 분야에서 응용되고 있다. 본 연구는 HEMA (2-hydroxyethylmethacrylate), NVP (N-vinyl pyrrolidone) MMA (methylmethacrylate)에 금과 은 나노입자를 첨가하였으며, $70^{\circ}C$에서 약 40분, $80^{\circ}C$에서 약 40분 마지막으로 $100^{\circ}C$에서 약 40분 동안의 열처리 공정을 거쳐 공중합 하였다. 중합 과정을 거쳐 중합된 고분자를 통해 물리적 특성을 측정한 결과, 함수율 28.43% ~ 35.27%, 굴절률 1.429 ~ 1.440를 나타내었으며, 가시 광선 투과율 79.2% ~ 86.5% 그리고 인장강도 값은 0.125 kgf ~ 0.201 kgf을 나타내었다. 본 실험 결과로 볼 때 항균성을 가지면서 기존의 콘택트렌즈의 물리적 특성에도 부합되는 공중합체가 생성된 것으로 판단된다.

Ionic liquid coated magnetic core/shell CoFe2O4@SiO2 nanoparticles for the separation/analysis of trace gold in water sample

  • Zeng, Yanxia;Zhu, Xiashi;Xie, Jiliang;Chen, Li
    • Advances in nano research
    • /
    • 제10권3호
    • /
    • pp.295-312
    • /
    • 2021
  • A new ionic liquid functionalized magnetic silica nanoparticle was synthesized and characterized and tested as an adsorbent. The adsorbent was used for magnetic solid phase extraction on ICP-MS method. Simultaneous determination of precious metal Au has been addressed. The method is simple and fast and has been applied to standard water and surface water analysis. A new method for separation/analysis of trace precious metal Au by Magnetron Solid Phase Extraction (MSPE) combined with ICP-MS. The element to be tested is rapidly adsorbed on CoFe2O4@SiO2@[BMIM]PF6 composite nano-adsorbent and eluted with thiourea. The method has a preconcentration factor of 9.5-fold. This method has been successfully applied to the determination of gold in actual water samples. Hydrophobic Ionic Liquids (ILs) 1-butyl-3-methylimidazole hexafluorophosphate ([BMIM]PF6) coated CoFe2O4@SiO2 nanoparticles with core-shell structure to prepare magnetic solid phase extraction agent (CoFe2O4@SiO2@ILs) and establish a new method of MSPE coupled with inductively coupled plasma mass spectrometry for separation/analysis of trace gold. The results showed that trace gold was adsorbed rapidly by CoFe2O4@SiO2@[BMIM]PF6 and eluanted by thiourea. Under the optimal conditions, preconcentration factor of the proposed method was 9.5-fold. The linear range, detection limit, correlation coefficient (R) and relative standard deviation (RSD) were found to be 0.01~1000.00 ng·mL-1, 0.001 ng·mL-1, 0.9990 and 3.4% (n = 11, c = 4.5 ng·mL-1). The CoFe2O4@SiO2 nanoparticles could be used repeatedly for 8 times. This proposed method has been successfully applied to the determination of trace gold in water samples.

Stacks of Two Different-sized Gold Nanodisks for Biological Imaging

  • 박지수;정동근;이태걸;위정섭
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.223.1-223.1
    • /
    • 2015
  • 본 연구에서는 지름이 다른 두 개의 디스크가 적층된 구조를 갖는 금 나노 구조체를 제작하고 그 광학적 특성에 대해 연구하였다. 나노임프린팅을 통하여 패턴된 폴리머 포어 어레이에 금 박막을 증착하고, 포어 내부에 증착된 금 나노구조체를 선택적으로 수거하는 방법을 이용하였다 [1]. 특히 금 증착 시, 빗각으로 증착 (oblique-angle deposition)을 하여 지름이 다른 두 개의 디스크가 적층되어 있는 구조를 형성하는 것이 가능하였다. 증착 각도의 조절을 통해 적층된 두 디스크의 지름 비율을 변화시킬 뿐만 아니라, 2차원 디스크 형태의 나노구조체부터 3차원 디쉬 형태의 구조체도 제작이 가능함을 확인하였다. 제안된 하향식 나노공정을 통하여 합성된 금 나노구조체를 이용하여 광열 전환(photothermal heat conversion)과 광 간섭성 단층 (optical coherence tomography) 측정을 진행하였고, 서로 다른 두 개의 디스크가 적층된 형태의 금 나노구조체는 상용 금 나노로드 (Au nanorod) 보다 높은 광 열 전환 효율을 갖을 뿐 아니라 우수한 OCT 이미징 특성을 보였다. 광열 전환 및 OCT 이미징 실험 결과는 각각 플라즈모닉 나노구조의 광흡수, 광산란 특성에 기반하므로, 본 연구를 통하여 제안된 금 나노구조체는 광흡수 및 광산란을 기반한 바이오이미징 나노프로브로 유용하게 사용될 수 있을 것으로 전망된다.

  • PDF

Nanotechnology in Biodevices

  • Choi, Jeong-Woo;Oh, Byung-Keun;Kim, Young-Kee;Min, Jun-Hong
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권1호
    • /
    • pp.5-14
    • /
    • 2007
  • Nanotechnology is the creation and utilization of materials, devices, and systems through the control of matter on the nanometer. The technology has been applied to biodevices such as bioelectronics and biochips to improve their performances. Nanoparticles, such as gold (Au) nanoparticles, are the most widely used of the various other nanotechnologies for manipulation at the nanoscale as well as nanobiosensors. The immobilization of biomolecules is playing an increasingly important role in the development of biodevices with high performance. Nanopatteming technology, which is able to increase the density of chip arrays, offers several advantages, including cost lowering, simultaneous multicomponent detection, and the efficiency increase of biochemical reactions. A microftuidic system incorporated with control of nanoliter of fluids is also one of the main applications of nanotechnologies. This can be widely utilized in the various fields because it can reduce detection time due to tiny amounts of fluids, increase signal-to-noise ratio by nanoparticles in channel, and detect multi-targets simultaneously in one chamber. This article reviews nanotechnologies such as the application of nanoparticles for the detection of biomolecules, the immobilization of biomolecules at nanoscale, nanopatterning technologies, and the microfluidic system for molecular diagnosis.

In Situ Single Cell Monitoring by Isocyanide-Functionalized Ag and Au Nanoprobe-Based Raman Spectroscopy

  • Lee, So-Yeong;Jang, Soo-Hwa;Cho, Myung-Haing;Kim, Young-Min;Cho, Keun-Chang;Ryu, Pan Dong;Gong, Myoung-Seon;Joo, Sang-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권9호
    • /
    • pp.904-910
    • /
    • 2009
  • The development of effective cellular imaging requires a specific labeling method for targeting, tracking, and monitoring cellular/molecular events in the living organism. For this purpose, we studied the cellular uptake of isocyanide-functionalized silver and gold nanoparticles by surface-enhanced Raman scattering (SERS). Inside a single mammalian cell, we could monitor the intracellular behavior of such nanoparticles by measuring the SERS spectra. The NC stretching band appeared clearly at ${\sim}2,100cm^{-1}$ in the well-isolated spectral region from many organic constituents between 300 and 1,700 or 2,800 and $3,600cm^{-1}$. The SERS marker band at ${\sim}2,100cm^{-1}$ could be used to judge the location of the isocyanide-functionalized nanoparticles inside the cell without much spectral interference from other cellular constituents. Our results demonstrate that isocyanide-modified silver or gold nanoparticle-based SERS may have high potential for monitoring and imaging the biological processes at the single cell level.