• Title/Summary/Keyword: Au-Ag

Search Result 491, Processing Time 0.033 seconds

Mechanical properties of porcelain fused gold alloy containing indium, tin and copper (인듐, 주석, 동 첨가에 따른 도재소부용 금합금의 기계적 특성 변화)

  • Nam, Sang-Yong;Kwak, Dong-Ju;Lee, Deok-Su
    • Journal of Technologic Dentistry
    • /
    • v.24 no.1
    • /
    • pp.65-71
    • /
    • 2002
  • This study was performed to observe the microhardness change of the surface and the bonding strength between the porcelain and alloy specimens in order to investigate the effects of appended indium, tin and copper on interfacial properties of Au-Pd-Ag alloys. The hardness of castings was measured with a micro-Vicker's hardness tester. The interfacial shear bonding strength between alloy specimen and fused porcelain was measured with a mechanical testing system(MTS 858.20). The microhardness of Au-Pd-Ag alloy was increased by adding indium and tin, but not increased by adding copper. The shear bonding strength of Au-Pd-Ag-Sn alloy and Au-Pd-Ag-Cu alloy showed 87MPa, 57MPa. The higher concentration of adding elements showed the higher shear bonding strength.

  • PDF

Biological Synthesis of Au Core-Ag Shell Bimetallic Nanoparticles Using Magnolia kobus Leaf Extract (목련잎 추출액을 이용한 Au Core-Ag Shell 합금 나노입자의 생물학적 합성)

  • Song, Jae Yong;Kim, Beom Soo
    • Korean Chemical Engineering Research
    • /
    • v.48 no.1
    • /
    • pp.98-102
    • /
    • 2010
  • Magnolia kobus leaf extract was used for the synthesis of bimetallic Au core-Ag shell nanoparticles. Gold seeds and silver shells were formed by first treating aqueous solution of $HAuCl_4$ and then $AgNO_3$ with the plant leaf extract as reducing agent. UV-visible spectroscopy was monitored as a function of reaction time to follow the formation of bimetallic nanoparticles. The synthesized bimetallic nanoparticles were characterized with transmission electron microscopy(TEM), energy dispersive X-ray spectroscopy(EDS), and X-ray photoelectron spectroscopy(XPS). TEM images showed that the bimetallic nanoparticles are a mixture of plate(triangles, pentagons, and hexagons) and spherical structures. The atomic Ag contents of the bimetallic Au/Ag nanoparticles determined from EDS and XPS analysis were 34 and 65 wt%, respectively, suggesting the formation of bimetallic Au core-Ag shell nanostructure. This core-shell type nanostructure is expected to have potential for application in surface enhanced Raman spectroscopy and in the sensitive detection of biomolecules.

Comparative Characteristics of Gold-Gold and Gold-Silver Nanogaps Probed by Raman Scattering Spectroscopy of 1,4-Phenylenediisocyanide

  • Kim, Kwan;Choi, Jeong-Yong;Shin, Dong-Ha;Lee, Hyang-Bong;Shin, Kuan-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.spc8
    • /
    • pp.2941-2948
    • /
    • 2011
  • A nanogap formed by a metal nanoparticle and a flat metal substrate is one kind of "hot site" for surface-enhanced Raman scattering (SERS). The characteristics of a typical nanogap formed by a planar Au and either an Au and Ag nanoparticle have been well studied using 4-aminobenzenethiol (4-ABT) as a probe. 4-ABT is, however, an unusual molecule in the sense that its SERS spectral feature is dependent not only on the kinds of SERS substrates but also on the measurement conditions; thus further characterization is required using other adsorbate molecules such as 1,4-phenylenediisocyanide (1,4-PDI). In fact, no Raman signal was observable when 1,4-PDI was selfassembled on a flat Au substrate, but a distinct spectrum was obtained when 60 nm-sized Au or Ag nanoparticles were adsorbed on the pendent -NC groups of 1,4-PDI. This is definitely due to the electromagnetic coupling between the localized surface plasmon of Au or Ag nanoparticle with the surface plasmon polariton of the planar Au substrate, allowing an intense electric field to be induced in the gap between them. A higher Raman signal was observed when Ag nanoparticles were attached to 1,4-PDI, irrespective of the excitation wavelength, and especially the highest Raman signal was measured at the 632.8 nm excitation (with the enhancement factor on the order of ${\sim}10^3$), followed by the excitation at 568 and 514.5 nm, in agreement with the finite-difference timedomain calculation. From a separate potential-dependent SERS study, the voltage applied to the planar Au appeared to be transmitted without loss to the Au or Ag nanoparticles, and from the study of the effect of volatile organics, the voltage transmission from Au or Ag nanoparticles to the planar Au also appeared as equally probable to that from the planar Au to the Au or Ag nanoparticles in a nanogap electrode. The response of the Au-Ag nanogap to the external stimuli was, however, not the same as that of the Au-Au nanogap.

Conductance of a Single Molecule Junction Formed with Ni, Au, and Ag Electrodes

  • Kim, Taekyeong
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.6
    • /
    • pp.513-516
    • /
    • 2014
  • We measure the conductance of a 4,4'-diaminobiphenyl formed with Ni electrodes using a scanning tunneling microscope-based break-junction technique. For comparison, we use Au or Ag electrodes to form a metal-molecular junction. For molecules that conduct through the highest occupied molecular orbital, junctions formed with Ni show similar conductance as Au and are more conductive than those formed with Ag, consistent with the higher work function for Ni or Au. Furthermore, we observe that the measured molecular junction length that is formed with the Ni or Au electrodes was shorter than that formed with the Ag electrodes. These observations are attributed to a larger gap distance of the Ni or Au electrodes compared to that of the Ag electrodes after the metal contact ruptures. Since our work allows us to measure the conductance of a molecule formed with various electrodes, it should be relevant to molecular electronics with versatile materials.

Relativistic Effects on Orbital Energies in AgH and AuH ; A Clue to the Origin of Relativistic Correlation Effects

  • Lee, Yoon-Sup;McLean, A. D.
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.2
    • /
    • pp.122-126
    • /
    • 1987
  • Oribtal energies for AuH and AgH are calculated by an all-electron relativistic self-consistent-field method using Slater type basis functions. Major relativistic effects for AgH are spin-orbit splittings and those for AuH are large shifts in orbital energies in addition to spin-orbit splittings. Relativistic effects on orbital energies in AgH and AuH imply that changes in correlation energies for relativistic calculations of AuH will be significantly larger than those of AgH, providing partial explanation for the large discrepencies in equilibrium bond length and the dissociation energy between experiments and theoretical estimates for AuH. Large relativistic effects on orbital energies indicate that relativistic contributions should be included for the correct interpretation of ionization potentials for these molecules. Relativistic effects are also evident in dipole moments for these molecules.

Optical Properties of Ag-Au Alloys (Ag-Au 함금의 광학적 특성 연구)

  • 노평식
    • Journal of the Korean institute of surface engineering
    • /
    • v.8 no.3
    • /
    • pp.1-4
    • /
    • 1975
  • To study optical properties of Ag-Au alloys as the simplest homogeneous diordered alloys, the dependence of the reflectivity of Ag-Au alloys on their composition has been measured with the wave lengths ranging from 700m${\mu}$ to 900m${\mu}$. Measurements were made on mechanically polished bulk samples and the experimental results are discussed in terms of the Drude-Zender theory. The distributions on the reflectivity of various wavelengths are also discussed.

  • PDF

Effect of Alloying Elements and Thermal Aging on the Contact Resistance of Electroplated Gold Alloy Layers (금 합금 도금층의 접촉저항에 미치는 합금원소의 종류 및 Thermal Aging의 영향)

  • Lee, Jiwoong;Son, Injoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.6
    • /
    • pp.235-241
    • /
    • 2013
  • In this study, the effects of alloying elements and thermal aging on the contact resistance of electroplated gold alloy layers were investigated by surface analysis using X-ray photoelectron spectroscopy (XPS). The contact resistance of Au-Ag alloy was lower than that of Au-Ni or Au-Co alloy after thermal aging. The XPS results show that nickel and oxygen present as nickel oxides such as NiO and $Ni_2O_3$ on the surface of gold layers after thermal aging. The increase in the contact resistance after thermal aging is attributable to the nickel oxide layer formed on the surface of the gold layers. The content of nickel diffused from the underlayer during the thermal aging was high in the order of Au-Co, Au-Ni and Au-Ag alloy because the area of grain boundary was large in the order of Au-Ag, Au-Ni and Au-Co alloy.

Temperature Measurement and Contact Resistance of Au Stud Bump Bonding and Ag Paste Bonding with Thermal Heater Device (Au 스터드 범프 본딩과 Ag 페이스트 본딩으로 연결된 소자의 온도 측정 및 접촉 저항에 관한 연구)

  • Kim, Deuk-Han;Yoo, Se-Hoon;Lee, Chang-Woo;Lee, Taek-Yeong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.2
    • /
    • pp.55-61
    • /
    • 2010
  • The device with tantalum silicide heater were bonded by Ag paste and Au SBB(Stud Bump Bonding) onto the Au coated substrate. The shear test after Au ABB and the thermal performance under current stressing were measured. The optimum condition of Au SBB was determined by fractured surface after die shear test and $350^{\circ}C$ for substrate, $250^{\circ}C$ for die during flip chip bonding with bonding load of about 300 g/bump. With applying 5W through heater on the device, the maximum temperature with Ag paste bonding was about $50^{\circ}C$. That with Au SBB on Au coated Si substrate showed $64^{\circ}C$. The difference of maximum temperatures is only $14^{\circ}C$, even though the difference of contact area between Ag paste bonding and Au SBB is by about 300 times and the simulation showed that the contact resistance might be one of the reasons.

Reaction Characteristics between In-l5Pb-5Ag Solder and Au/Ni Surface Finish and Reliability Evaluation of Solder Joint (In-l5Pb-5Ag 솔더와 Au/Ni Surface Finish와의 반응 특성 및 접합 신뢰성 평가)

  • 이종현;엄용성;최광성;최병석;윤호경;박흥우;문종태
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.4
    • /
    • pp.1-9
    • /
    • 2002
  • The metallurgical reaction properties between the pad consisted of 0.5 $\mu\textrm{m}$Au/5 $\mu\textrm{m}$Ni/Cu layers on a conventional ball grid array (BGA) substrate and In-15 (wt.%)Pb-5Ag solder ball were characterized during the reflow process and solid aging. During the reflow process of 1 to 5 minutes, it was observed that thin $AuIn_2$ or Ni-In intermetallic layer was formed at the interface of solder/pad. The dissolution rate of the Au layer into the molten solder was about $2\times 10^{-3}$ $\mu\textrm{m}$/sec which is remarkably low in comparison with a eutectic Sn-37Pb solder. After solid aging treatment for 500 hrs at $130^{\circ}C$, the thickness of $Ni_{28}In_{72}$ intermetallic layer was increased to about 3 $\mu\textrm{m}$ in all the conditions nevertheless the initial reflow time was different. These result show that In atoms in the solder alloy were diffused through the $AuIn_2$ phase to react with underlaying Ni layer during solid aging treatment. From the microstructural observation and shear tests, the reaction properties between In-15Pb-5Ag alloy and Au/Ni surface finish were analyzed not to trigger Au-embrittlement in the solder joints unlike Sn-37Pb composition.

  • PDF

Application of Multivariate Statistics and Geostatistical Techniques to Identify the Distribution Modes of the Co, Ni, As and Au-Ag ore in the Bou Azzer-East Deposits (Central Anti-Atlas Morocco)

  • Souiri, Muhammad;Aissa, Mohamed;Gois, Joaquim;Oulgour, Rachid;Mezougane, Hafid;El Azmi, Mohammed;Moussaid, Azizi
    • Economic and Environmental Geology
    • /
    • v.53 no.4
    • /
    • pp.363-381
    • /
    • 2020
  • The polymetallic Co, Ni, Cu, As, Au, and Ag deposits of Bou Azzer East are located in the western part of the Bou Azzer inlier in the Central Anti Atlas, Morocco. Six stages of emplacement of the mineralization have been identified. Precious metals (native gold and electrum) are present in all stages of this deposit except the early nickeliferous stage. From the Statistical analysis of the Co, As, Ni, Au, and Ag contents of a set of 501 samples, shows that the Pearson correlation coefficient between As-Co elements (0.966) is the highest followed by that of the Au-Ag couple (0.506). Principal component analysis (PCA) and hierarchical ascending classification (HAC) of the grades show, that Ni is associated with the pair (As-Co) and Cu is rather related to the pair (Au-Ag). The kriging maps show that the highest values of the Co, As and Ni appear in the contact of the serpentinite with other facies, as for those of Au and Ag, in addition to anomalous zones concordant with those of Co, Ni and As, they show anomalies at the extreme South and North of the study area. The development of the anomalous Au and Ag zones is mainly along the N40-50°E and N145°E directions.