• 제목/요약/키워드: Au and Pt nanoparticles

검색결과 28건 처리시간 0.027초

Synthesis of Trimetallic Au@Pb@Pt Core-shell Nanoparticles and their Electrocatalytic Activity toward Formic Acid and Methanol

  • Patra, Srikanta;Yang, Hae-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권7호
    • /
    • pp.1485-1488
    • /
    • 2009
  • A facile, seed-mediated preparation method of trimetallic Au@Pb@Pt core-shell nanoparticles is developed. Au nanoparticles are the template seeds onto which sequentially reduced Pb and Pt are deposited. The trimetallic core-shell structure is confirmed by UV-Vis spectroscopy, TEM and EDS analysis, and cyclic voltammetry. The trimetallic Au@Pb@Pt core-shell nanoparticles show high electrocatalytic activity for formic acid and methanol electrooxidation.

Plasmonic effects and size relation of gold-platinum alloy nanoparticles

  • Jawad, Muhammad;Ali, Shazia;Waseem, Amir;Rabbani, Faiz;Amin, Bilal Ahmad Zafar;Bilal, Muhammad;Shaikh, Ahson J.
    • Advances in nano research
    • /
    • 제7권3호
    • /
    • pp.169-180
    • /
    • 2019
  • Plasmonic effects of gold and platinum alloy nanoparticles (Au-Pt NPs) and their comparison to size was studied. Various factors including ratios of gold and platinum salt, temperature, pH and time of addition of reducing agent were studied for their effect on particle size. The size of gold and platinum alloy nanoparticles increases with increasing concentration of Pt NPs. Temperature dependent synthesis of gold and platinum alloy nanoparticles shows decrease in size at higher temperature while at lower temperature agglomeration occurs. For pH dependent synthesis of Au-Pt nanoparticles, size was found to be increased by increase in pH from 4 to 10. Increasing the time of addition of reducing agent for synthesis of pure and gold-platinum alloy nanoparticles shows gradual increase in size as well as increase in heterogeneity of nanoparticles. The size and elemental analysis of Au-Pt nanoparticles were characterized by UV-Vis spectroscopy, XRD, SEM and EDX techniques.

Pt 기반 이원계 나노입자의 산소 및 일산화탄소 흡착 특성에 대한 전자밀도함수이론 연구 (Density Functional Theory Study of Separated Adsorption of O2 and CO on Pt@X(X = Pd, Ru, Rh, Au, or Ag) Bimetallic Nanoparticles)

  • 안혜성;하현우;유미;최혁;김현유
    • 한국재료학회지
    • /
    • 제28권6호
    • /
    • pp.365-369
    • /
    • 2018
  • We perform density functional theory calculations to study the CO and $O_2$ adsorption chemistry of Pt@X core@shell bimetallic nanoparticles (X = Pd, Rh, Ru, Au, or Ag). To prevent CO-poisoning of Pt nanoparticles, we introduce a Pt@X core-shell nanoparticle model that is composed of exposed surface sites of Pt and facets of X alloying element. We find that Pt@Pd, Pt@Rh, Pt@Ru, and Pt@Ag nanoparticles spatially bind CO and $O_2$, separately, on Pt and X, respectively. Particularly, Pt@Ag nanoparticles show the most well-balanced CO and $O_2$ binding energy values, which are required for facile CO oxidation. On the other hand, the $O_2$ binding energies of Pt@Pd, Pt@Ru, and Pt@Rh nanoparticles are too strong to catalyze further CO oxidation because of the strong oxygen affinity of Pd, Ru, and Rh. The Au shell of Pt@Au nanoparticles preferentially bond CO rather than $O_2$. From a catalysis design perspective, we believe that Pt@Ag is a better-performing Pt-based CO-tolerant CO oxidation catalyst.

Nano Electrocatalysis for Fuel Cells

  • Sung, Yung-Eun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.133-133
    • /
    • 2013
  • For both oxygen reduction (ORR) and hydrogen oxidation reactions (HOR) of proton electrolyte membrane fuel cells (PEMFCs), alloying Pt with another transition metal usually results in a higher activity relative to pure Pt, mainly due to electronic modification of Pt and bifunctional behaviour of alloy surface for ORR and HOR, respectively. However, activity and stability are closely related to the preparation of alloy nanoparticles. Preparation conditions of alloy nanoparticles have strong influence on surface composition, oxidation state, nanoparticle size, shape, and contamination, which result from a large difference in redox priority of metal precursors, intrinsic properties of metals, increasedreactivity of nanocrystallites, and interactions with constituents for the synthesis such as solvent, stabilizer, and reducing agent, etc. Carbon-supported Pt-Ni alloy nanoparticles were prepared by the borohydride reduction method in anhydrous solvent. Pt-Ru alloy nanoparticles supported on carbon black were also prepared by the similar synthetic method to that of Pt-Ni. Since electrocatalytic reactions are strongly dependent on the surface structure of metal catalysts, the atom-leveled design of the surface structure plays a significant role in a high catalytic activity and the utilization of electrocatalysts. Therefore, surface-modified electrocatalysts have attracted much attention due to their unique structure and new electronic and electrocatalytic properties. The carbon-supported Au and Pd nanoparticles were adapted as the substrate and the successive reduction process was used for depositing Pt and PtM (M=Ru, Pd, and Rh) bimetallic elements on the surface of Au and Pd nanoparticles. Distinct features of the overlayers for electrocatalytic activities including methanol oxidation, formic acid oxidation, and oxygen reduction were investigated.

  • PDF

Catalytic Activity of Au/$TiO_2$ and Pt/$TiO_2$ Nanocatalysts Prepared with Arc Plasma Deposition under CO Oxidation

  • Jung, Chan Ho;Kim, Sang Hoon;Sahu, Nruparaj;Park, Dahee;Yun, Jung Yeul;Ha, Heonphil;Park, Jeong Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.288-288
    • /
    • 2013
  • We report the catalytic activity of Au/$TiO_2$ and Pt/$TiO_2$ nanocatalysts under CO oxidation fabricated by arc plasma deposition (APD), which is a facile dry process with no organic materials involved. Using APD, the catalyst nanoparticles were well dispersed on $TiO_2$ powder with an average particle size (2~4 nm) well below that of nanoparticles prepared by the sol-gel method (10 nm). We found that the average particle size of the dispersed gold nanoparticles can be controlled by changing the plasma discharge voltage of APD. Accordingly, the amount of loaded gold on the $TiO_2$ powder increased with increasing discharge voltage, but the specific surface area of the Au/$TiO_2$ samples decreased. As for catalytic reactivity, Au/$TiO_2$ showed a higher catalytic activity than Pt/$TiO_2$ in CO oxidation. The catalytic activity of the Au/$TiO_2$ samples showed size dependence where higher catalytic activity occurred on smaller gold nanoparticles. The study suggests that APD is a simple way to fabricate catalytically active nanocatalysts.

  • PDF

고효율 염료감응형 태양전지를 위한 탄소나노튜브 기반 나노 하이브리드 상대전극 (Carbon Nanotube-based Nanohybrid Materials as Counter Electrode for Highly Efficient Dye-sensitized Solar Cells)

  • 김지수;심은주;다오 반 두옹;최호석
    • Korean Chemical Engineering Research
    • /
    • 제54권2호
    • /
    • pp.262-267
    • /
    • 2016
  • 본 연구에서는 건식플라즈마 환원방법을 이용하여 다중벽 탄소나노튜브(MWNT) 코팅 층 위에 백금, 금, 백금/금 이종 나노입자를 쉽고 균일하게 고정화 시킬 수 있는 방법을 제시한다. 나노입자는 다중벽 탄소나노튜브 위에 안정적이고 균일하게 고정화되어 나노하이브리드 소재가 되며, 이렇게 합성된 나노하이브리드 소재는 염료감응형 태양전지의 상대전극에 적용된다. CV, EIS, Tafel 측정을 통해 준비된 상대전극의 전기화학적 특성을 분석한 결과, PtAu alloy/MWNT 상대전극이 가장 높은 전기화학적 촉매 활성과 전기 전도도를 보여준다. PtAu alloy/MWNT 상대전극을 이용한 염료감응형 태양전지는 7.9%의 에너지 변환 효율을 보임으로써 MWNT (2.6%), AuNP/MWNT (2.7%) 그리고 PtNP/MWNT (7.5%) 상대전극을 사용한 염료감응형 태양전지의 효율과 비교하였을 때, 가장 높은 효율을 보여주고 있다.

개미산 산화 반응을 위한 카본 담지 표면 합금의 전기촉매 활성 (Electrocatalytic activity of Carbon-supported near-surface alloys (NSAs) for Formic acid oxidation)

  • 박인수;최종호;이국승;전태열;성영은
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.459-462
    • /
    • 2006
  • Formic acid recently attracted attention as an alternative fuel for direct liquid fuel cells(DLFCs) due to its high theoretical open circuit voltage(1.45V). In this paper, a novel chemical strategy is described for the preparation and characterization of carbon-supported and surface-alloys, which were prepared by using a successive reduction process. After preparing Au colloid nanoparticles, the deposition of Au colloid nanoparticles occurred spontaneously in the carbon black-dispersed aqueous solution. Then nano-scaled Pt layer were formed on the surface of carbon-supported Au nanoparticles. The Au-Pt[x] showed the higher electrocatalytic activity than those of the particle-alloys and commercial one (Johnson-Matthey) for the reaction of formic acid oxidation when the mass-specific currents were compared. The increased electrocatalytic activity might be attributed to the effective surface structure of surface-alloys, which have a high utilization of active materials for the surface reaction of electrode.

  • PDF

Catalytic Activity of Au/$TiO_2$ and Pt/$TiO_2$ Nanocatalysts Synthesized by Arc Plasma Deposition

  • Jung, Chan-Ho;Kim, Sang-Hoon;Reddy, A.S.;Ha, H.;Park, Jeong-Y.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.245-245
    • /
    • 2012
  • Syntheses of oxide supported metal catalysts by wet-chemical routes have been well known for their use in heterogeneous catalysis. However, uniform deposition of metal nanoparticles with controlled size and shape on the support with high reproducibility is still a challenge for catalyst preparation. Among various synthesis methods, arc plasma deposition (APD) of metal nanoparticles or thin films on oxide supports has received great interest recently, due to its high reproducibility and large-scale production, and used for their application in catalysis. In this work, Au and Pt nanoparticles with size of 1-2 nm have been deposited on titania powder by APD. The size of metal nanoparticles was controlled by number of shots of metal deposition and APD conditions. These catalytic materials were characterized by x-ray diffraction (XRD), inductively coupled plasma (ICP-AES), CO-chemisorption and transmission electron microscopy (TEM). Catalytic activity of the materials was measured by CO oxidation using oxygen, as a model reaction, in a micro-flow reactor at atmospheric pressure. We found that Au/$TiO_2$ is reactive, showing 100% conversion at $110^{\circ}C$, while Pt/$TiO_2$ shows 100% conversion at $200^{\circ}C$. High activity of metal nanoparticles suggests that APD can be used for large scale synthesis of active nanocatalysts. We will discuss the effect of the structure and metal-oxide interactions of the catalysts on catalytic activity.

  • PDF

Preparation of Ag, Pd, and Pt50-Ru50 colloids prepared by γ-irradiation and electron beam and electrochemical immobilization on gold surface

  • Kim, Kyung-Hee;Seo, Kang-Deuk;Oh, Seong-Dae;Choi, Seong-Ho;Oh, Sang-Hyub;Woo, Jin-Chun;Gopalan, A.;Lee, Kwang-Pill
    • 분석과학
    • /
    • 제19권4호
    • /
    • pp.333-341
    • /
    • 2006
  • PVP-protected Ag, Pd and $Pt_{50}-Ru_{50}$ colloids were prepared independently by using ${\gamma}$-irradiation and electron beam (EB) at ambient temperature. UV-visible spectra of these colloids show the characteristic bands of surface resonance and give evidence for the formation of nanoparticles. Transmission electron microscopy (TEM) experiments were used to know the morphology of nanoparticles prepared by ${\gamma}$-irradiation and EB. The size of Ag, Pd, and $Pt_{50}-Ru_{50}$ nanoparticles prepared by ${\gamma}$-irradiation was ca. 13, 2-3, 15 nm, respectively. While, the size of Ag, Pd, and $Pt_{50}-Ru_{50}$ nanoparticles prepared by EB was ca. 10, 6, and 1-3 nm, respectively. Cyclic voltamograms (CV) were recorded for the Au electrodes immobilized with these nanoparticles. CVs indicated the modifications in the surface as a result of immobilization.

요철형 금, 백금, 팔라듐 나노플레이트의 촉매성 환원 효율 비교 (Catalytic Reduction Efficiency Comparison between Porous Au, Pt, and Pd Nanoplates)

  • 신우준;김영진;장홍제;박지훈;김영관
    • Composites Research
    • /
    • 제32권2호
    • /
    • pp.85-89
    • /
    • 2019
  • 나노입자에 기반한 화학 촉매 반응 효율성에는 크기, 형태 및 조성이 중요한 영향을 미치는 것으로 알려져 있다. 이에 대한 체계적인 비교를 위해 갈바닉 치환 반응을 통해 100 nm 직경의 요철형 표면 구조를 갖는 금, 백금, 팔라듐 나노플레이트에 대한 정량적인 분석 조건 형성이 가능하였으며, 4-나이트로페놀과 4-나이트로아닐린을 대상으로한 촉매 반응 진행을 분광분석법을 통해 확인할 수 있었다. 이로부터 동일 형태 및 형태에서 구성 원소에 따라 확연히 다른 Pd > Au > Pt의 촉매성 환원 반응 효율을 보임을 관찰할 수 있었으며, 기질의 형태에 따라 추가적인 영향을 받음을 관찰 가능하였다.