• Title/Summary/Keyword: Au(111)

Search Result 130, Processing Time 0.029 seconds

Hydrogen-bonded Molecular Network of Anthraquinone on Au(111)

  • Kim, Ji-Yeon;Yoon, Jong-Keon;Park, Ji-Hun;Kim, Ho-Won;Kahng, Se-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.107-107
    • /
    • 2011
  • Supramolecular structures of anthraquinone molecules on a metallic surface are studied using scanning tunneling microscope (STM) under ultrahigh-vacuum conditions. When we deposited anthraquinone molecules on Au(111) substrate, the molecules formed three different phases (Chevron type, tetragon type and disordered type) on the surface. Based on our STM measurements, we proposed models for the observed molecular structures. Chevrons are consisted of several molecular chains, which make well-ordered two-dimensional islands by some weak interrow interactions and we could observe tetragon structures which make array of (111) metallic surface. each molecular rows in the chevrons are stabilized by two parallel O-H hydrogen bonds and disordered structures are observed 1-dimensional phase with hydrogen bond. First-principles calculations based on density functional theory are performed to reproduce the proposed models. Distances and energy gains for each intermolecular bond are estimated. In this presentation, we explain possible origins of these molecular structures in terms of hydrogen bonds, Van der Waals interactions and molecule-substrate interactions.

  • PDF

High Crystalline Epitaxial Bi2Se3 Film on Metal and Semiconductor Substrates

  • Jeon, Jeong-Heum;Jang, Won-Jun;Yun, Jong-Geon;Gang, Se-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.302-302
    • /
    • 2011
  • The binary chalcogenide semiconductor Bi2Se3 is at the center of intensive research on a new state of matter known as topological insulators. It has Dirac point in their band structures with robust surface states that are protected against external perturbations by strong spin-orbit coupling with broken inversion symmetry. Such unique band configurations were confirmed by recent angle-resolved photoelectron emission spectroscopy experiments with an unwanted n-type doping effect, showing a Fermi level shift of about 0.3 eV caused by atomic defects such as Se vacancies. Since the number of defects can be reduced using the molecular beam epitaxy (MBE) method. We have prepared the Bi2Se3 film on noble metal Au(111) and semiconductor Si(111) substrates by MBE method. To characterize the film, we have introduced several surface sensitive techniques including x-ray photoemission electron spectroscopy (XPS) and micro Raman spectroscopy. Also, crystallinity of the film has been confirmed by x-ray diffraction (XRD). Using home-built scanning tunneling microscope, we observed the atomic structure of quintuple layered Bi2Se3 film on Au(111).

  • PDF

Surface Structures and Thermal Desorption Behaviors of Cyclopentanethiol Self-Assembled Monolayers on Au(111)

  • Kang, Hun-Gu;Kim, You-Young;Park, Tae-Sun;Park, Joon-B.;Ito, Eisuke;Hara, Masahiko;Noh, Jae-Geun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1253-1257
    • /
    • 2011
  • The surface structures, adsorption conditions, and thermal desorption behaviors of cyclopentanethiol (CPT) self-assembled monolayers (SAMs) on Au(111) were investigated by scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and thermal desorption spectroscopy (TDS). STM imaging revealed that although the adsorption of CPT on Au(111) at room temperature generates disordered SAMs, CPT molecules at $50^{\circ}C$ formed well-ordered SAMs with a $(2{\surd}3{\times}{\surd}5)R41^{\circ}$ packing structure. XPS measurements showed that CPT SAMs at room temperature were formed via chemical reactions between the sulfur atoms and gold surfaces. TDS measurements showed two dominant TD peaks for the decomposed fragments ($C_5H_9^+$, m/e = 69) generated via C-S bond cleavage and the parent molecular species ($C_5H_9SH^+$, m/e = 102) derived from a recombination of the chemisorbed thiolates and hydrogen atoms near 440 K. Interestingly, dimerization of sulfur atoms in n-alkanethiol SAMs usually occurs during thermal desorption and the same reaction did not happen for CPT SAMs, which may be due to the steric hindrance of cyclic rings of the CPT molecules. In this study, we demonstrated that the alicyclic ring of organic thiols strongly affected the surface structure and thermal desorption behavior of SAMs, thus providing a good method for controlling chemical and physical properties of organic thiol SAMs.

Coexistence of Closely Packed c(4 × 2) and Striped Phases in Self-Assembled Monolayers of Decylthiocyanates on Au(111)

  • Choi, Young-Sik;Kang, Hun-Gu;Choi, In-Chang;Lee, Nam-Suk;Cho, Jun-Hyung;Jang, Chang-Hyun;Noh, Jaeg-Eun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.901-904
    • /
    • 2010
  • Decylthiocyanate (DTC) self-assembled monolayers (SAMs) on Au(111) were prepared by solution and vapor phase deposition methods at $50^{\circ}C$ for 24 h. The formation and surface structure of DTC SAMs were examined using scanning tunneling microscopy (STM). STM imaging revealed that DTC SAMs formed in 1 mM ethanol solution at $50^{\circ}C$ were composed of small ordered domains with lateral dimensions of a few nanometers and disordered phases, whereas DTC SAMs formed in the vapor phase at $50^{\circ}C$ contained two ordered phases: a closely packed c($4{\times}2$) superlattice and a striped phase with an interstripe spacing of 2.6 - 2.8 nm. It was also found that the ordered domain and vacancy island formation for DTC SAMs on Au(111) differs significantly from that of decanethiol SAMs, suggesting that adsorption mechanism is different from each other. From this study, it was confirmed that DTC SAMs with a high degree of structural order can be obtained by vapor phase deposition.

A study on crystallization of a-Si:H films (수소화된 비정질 규소박막의 결정화에 관한 연구)

  • 김도영;임동건;김홍우;심경석;이수홍;이준신
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.2
    • /
    • pp.269-277
    • /
    • 1998
  • The crystallization method determines the material quality and consequent device performance. This paper investigates the crystallization of a-Si:H films on various substrate materials and analyzes the crystallization effect with and without using eutectic forming metals. From the examinations of the various substrate materials, a metal Mo was selected for the a-Si:H films growth and subsequent crystallization of it. For a sample without any eutectic metal layer, we observed grain size of $0.8{\mu}m$ after $1100^{\circ}C$ anneal treatment. To reduce crystallization temperature, we used some of the eutectic forming metals such as Au, Al and Ag. Poly-Si films with grain size over $10{\mu}m$ and (111) preferential plains were achieved using a premetal layer of Au at an anneal temperature of $700^{\circ}C$. The various crystallization effects of eutectic metal thickness and type were investigated for photovoltaic (PV) device applications.

  • PDF