• 제목/요약/키워드: Attribute Selected Classifier

검색결과 1건 처리시간 0.015초

기계학습 알고리즘에 기반한 뇌파 데이터의 감정분류 및 정확도 향상에 관한 연구 (A research on the emotion classification and precision improvement of EEG(Electroencephalogram) data using machine learning algorithm)

  • 이현주;신동일;신동규
    • 인터넷정보학회논문지
    • /
    • 제20권5호
    • /
    • pp.27-36
    • /
    • 2019
  • 본 연구에서는 공개된 뇌파 데이터인 DEAP(A Database for Emotion Analysis using Physiological Signals) 데이터 세트를 활용한 감정분류 분석 및 정확도 향상에 대한 실험을 진행하였다. 실험에는 32명에 대한 32개의 뇌파측정 채널 데이터가 모두 사용되었다. 전처리과정에서는 뇌파 데이터에 대한 256Hz 샘플링작업을 진행하였고, 유한 임펄스 응답 필터를 사용하여 주파수 대역별로 쎄타(4-8Hz), 슬로 알파(8-10Hz), 알파(8-12Hz), 베타(12-30Hz), 감마(31-45Hz) 파형에 대한 데이터를 추출하였다. 추출한 데이터는 시간-주파수 변형을 통하여 데이터의 상태를 구분한 후에, 독립성분분석방법을 통해 잡음(Artifact)을 제거하여 데이터를 정제했다. 도출된 데이터는 분류기 기계학습 알고리즘 실험을 시행할 수 있도록 CSV 파일로 변형 하였으며, 감정분류에는 Arousal-Valence 평면을 사용하였다. 감정은 "긍정적(Positive)", "부정적(Negative)" 이외에 평온한 상태로 존재하는 "중립적(Neutral)"의 3가지 상태로 분류하였다. 정확도를 개선하기 위해서 랜덤 포레스트(Random Forest) 알고리즘에 속성 선택적 분류기(Attribute Selected Classifier: ASC) 방식에 의해 선택된 속성을 적용하여 실험하였다. 정확도는 "각성(Arousal)" 부분에서 Koelstra의 결과보다 "32.48%" 높은 결과가 도출되었고, Liu의 실험의 "정서가(Valence)"와 비교해보면 ASC(Random Forest) 결과가 "8.13%" 더 높은 결과를 도출하였다. 정확도를 개선하기 위해 ASC 방식을 적용한 랜덤 포레스트 분류기 실험결과에서는 전체평균을 기준으로 기존 연구 결과와 대비하여 "2.68%" 높은 정확도가 도출되었다.