• Title/Summary/Keyword: Attitude performance

Search Result 1,379, Processing Time 0.028 seconds

Design and Performance Evaluation of Attitude Control System for Unfixed Levitation Sculptures (무 고정 공중부양 조형물의 자세 제어장치 설계 및 성능평가)

  • Kang, Jingu
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.3
    • /
    • pp.11-17
    • /
    • 2017
  • The aerial support air sculptures currently exhibited in indoor spaces are similar to simple ad balloons, using multiple rope strands. Users now want more advanced unfixed sculptures, and hope these will develop into buoyant sculptures that can maintain the attitudes that users want on their own. This study investigated an attitude control system for unfixed levitation sculptures that can levitate with no rope and continuously maintain a certain attitude at a height specified by the user. To facilitate levitation, the exterior part of the sculpture was made of lightweight fibers, and the interior part was filled with helium gas. The controller was composed of a microprocessor of the dsPIC30F line from microchip, gyro, acceleration, and earth magnetic field sensors, and a highly efficient brushless DC (BLDC) electric motor. The attitude and position control system requires scheduling considering the trajectories of the sculpture and the control system, because the roles of the overall components are more important than those of a single controller. Furthermore, the system was designed like a fusion system that is expanded and controlled as a total controller, because it is interconnected with various sensors. The attitude control system of buoyant sculptures was implemented in this study, such that it can actively cope with the position, direction, stopping, and time aspects. The system performance was then evaluated.

Ground Experiment of Spacecraft Attitude Control Using Hardware Testbed

  • Oh, Choong-Suk;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.4 no.1
    • /
    • pp.75-87
    • /
    • 2003
  • The primary objective of this study is to demonstrate ground-based experiment for the attitude control of spacecraft. A two-axis rotational simulator with a flexible ann is constructed with on-off air thrusters as actuators. The simulator is also equipped with payload pointing capability by simultaneous thruster and DC servo motor actuation. The azimuth angle is controlled by on-off thruster command while the payload elevation angle is controlled by a servo-motor. A thruster modulation technique PWM(Pulse Width Modulation) employing a time-optimal switching function plus integral error control is proposed. An optical camera is used for the purpose of pointing as well as on-board rate sensor calibration. Attitude control performance based upon the new closed-loop control law is demonstrated by ground experiment. The modified switching function turns out to be effective with improved pointing performance under external disturbance. The rate sensor calibration technique by Kalman Filter algorithm led to reduction of attitude error caused by the bias in the rate sensor output.

An Efficient Attitude Reference System Design Using Velocity Differential Vectors under Weak Acceleration Dynamics

  • Lee, Byungjin;Yun, Sukchang;Lee, Hyung-Keun;Lee, Young Jae;Sung, Sangkyung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.222-231
    • /
    • 2016
  • This paper proposes a new method achieving computationally efficient attitude reference system for low cost strapdown sensors and microprocessor platform. The main idea in this method is to define and compare velocity differential vectors, geometrically computed from INS and GPS data with different update rate, for generating attitude error measurements which is further used for filter construction. A quaternion based Kalman filter configuration is applied for the attitude estimation with the adapted measurement model of differential vector comparison. Linearized model for Extended Kalman Filter and low pass filtered characteristics of measurement greatly extend the affordability of the proposed algorithm to the field of simple low cost embedded systems. For performance verification, experiment are done employing a practical low cost MEMS IMU and GPS receiver specification. Performance comparison with a high grade navigation system demonstrated good estimation result.

Estimation of Attitude and Position of Moving Objects Using Multi-filtered Inertial Navigation System (이동하는 물체의 자세와 위치를 추정하기 위한 다중 필터 관성 항법 시스템)

  • Hwang, Seo-Young;Lee, Jang-Myung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2339-2345
    • /
    • 2011
  • This paper proposes a new multi-filtered inertial navigation system to estimate the attitude and position of moving objects. This system has two states, the one is attitude state and the other is position/velocity state. For compensating IMU sensor errors, each of the two states uses a different filter: the attitude state uses the EKF and the position state uses the UPF. The fast and precise characteristics of the EKF have been properly utilized for the attitude estimation, while superior dynamic characteristics of the UPF have been fully adopted for the position estimation. The combination of these two filters in an inertial navigation system improves the system performance to be faster and more accurate. Experimental results demonstrate the superiority of this approach comparing to the conventional ones.

Attitude Control System Design & Verification for CNUSAIL-1 with Solar/Drag Sail

  • Yoo, Yeona;Kim, Seungkeun;Suk, Jinyoung;Kim, Jongrae
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.4
    • /
    • pp.579-592
    • /
    • 2016
  • CNUSAIL-1, to be launched into low-earth orbit, is a cubesat-class satellite equipped with a $2m{\times}2m$ solar sail. One of CNUSAIL's missions is to deploy its solar sail system, thereby deorbiting the satellite, at the end of the satellite's life. This paper presents the design results of the attitude control system for CNUSAIL-1, which maintains the normal vector of the sail by a 3-axis active attitude stabilization approach. The normal vector can be aligned in two orientations: i) along the anti-nadir direction, which minimizes the aerodynamic drag during the nadir-pointing mode, or ii) along the satellite velocity vector, which maximizes the drag during the deorbiting mode. The attitude control system also includes a B-dot controller for detumbling and an eigen-axis maneuver algorithm. The actuators for the attitude control are magnetic torquers and reaction wheels. The feasibility and performance of the design are verified in high-fidelity nonlinear simulations.

Performance Improvement in GPS Attitude Determination Using Unscented Kalman Filters (GPS를 이용한 자세결정에서 Unscented Kalman Filter를 이용한 성능 향상)

  • Chun Sebum;Lee Eunsung;Kang Taesam;Jee Gyu-In;Lee Young Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.7
    • /
    • pp.621-626
    • /
    • 2005
  • With precise GPS carrier positioning result, we can get attitude information if GPS antenna has adequate attaching position on the vehicle. In this case, baseline length information can be bandied as an additional measurement or constraint. In this paper, we have proposed a method to improve the attitude accuracy. To overcome nonlinearity of baseline observation model, we analyze attitude estimation result using existing estimation method like a least square method and Kalman filter, and apply a new nonlinear estimation method an unscented Kalman filter Finally we confirm the improvement of attitude estimation result in the case of appling the unscented Kalman filter.

Attitude Stabilization of a Quad-Rotor UAV Using a Two-camera Vision System

  • Won, Dae-Yeon;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.76-84
    • /
    • 2008
  • This paper is mainly concerned with the vision-based attitude stabilization of a quad-rotor UAV. The methods for attitude control rely on computing the roll and pitch angles of the vehicle from a two-camera vision system. One camera is attached to the body-fixed x-axis and the other to the body-fixed y-axis. The attitude computation for the quad-rotor UAV is performed by image processing consisting of Canny edge and Hough line detection. A proportional and integral controller is employed for the attitude hold autopilot. In this paper, the quad-rotor UAV is modeled by 6-DOF nonlinear equations of motion that includes rotor aerodynamics with blade element theory. The performance of the proposed method is evaluated through 3D environmental numerical simulations.

Design and Evaluation of Real-time GNSS Attitude Determination Systems using Low Cost Receivers (저가형 수신기를 이용한 실시간 GNSS 자세결정 시스템 설계 및 성능 평가)

  • Chae, JeongGeun;Lee, DongSun;Kang, In-Suk;Park, Chansik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.9
    • /
    • pp.1259-1265
    • /
    • 2014
  • In this paper, the real-time attitude determination based Matlab using low-cost receivers was designed and evaluated. The GNSS attitude determination system was implemented to operation in real-time by TimerCallback in MATLAB. The TTM(Transmission Time Misalignment) of U-blox receiver was confirmed through zero baseline tests and this problem was revised. The computed attitude by the high-cost NovAtel receiver was compared to the computed attitude by the low-cost U-blox receiver. As a result of this, the performance of attitude determination systems by low-cost receiver was confirmed. To determine baseline, LAMBDA and BC-LAMBDA for integer ambiguities search methods were used. To confirm suitable integer ambiguity search method in real-time attitude determination algorithm, determined baselines by two methods were compared, and it was confirmed that BC-LAMBDA is more suitable. As a result of this, the operation of real-time attitude determination system was confirmed using 3 low-cost receivers.

Knowledge, Attitude, and Performance Competence on Cardiopulmonary Resuscitation in Football Players (축구선수의 기본심폐소생술에 대한 지식, 태도 및 수행능력)

  • Moon, Tae-Young;Park, Sun-Mun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.7
    • /
    • pp.3085-3093
    • /
    • 2012
  • The purpose of this study is to examine difference in knowledge level, attitude and performance competence on CPR (Cardiopulmonary Resuscitation) in football players. For this, questionnaire survey was carried out from October 5, 2011 to October 19 targeting 234 football players of high schools and universities where are located in Seoul, Gyeonggi, and Gangwon-do Province. The collected data was carried out frequency, t-test ANOVA, and correlation analysis by using SPSS/PC 19.0 for Windows. All the statistical analyses were set for significance level in p<.05. The results are as follows. Knowledge level, attitude and performance competence on CPR according to football players' general characteristics were indicated to have influence upon gender, academic background, and the appearance of educational experience in CPR. It was indicated that there is difference between CPR-related characteristics, and knowledge level, attitude & performance competence. Also, it was indicated that there is correlation among knowledge level, attitude and performance competence on CPR in football players. Based on these results, it accurately grasps experience and knowledge level on CPR in football players, thereby making a place available for having a game with security, resulting in being considered to possibly make the better sports.

Knowledge, Attitude, and Performance on the Hand Washing of Health Care related Students (보건계 대학생의 손씻기에 대한 지식, 태도 및 수행도)

  • Ryu, Seong-Mi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.8
    • /
    • pp.3916-3924
    • /
    • 2013
  • The purpose of this study is to provide the students with the proper hand washing knowledge after examining their attitude and performance of health science college students. Data were collected from 425 students at the college in G metropolitan city by using a questionnaire. Data were analyzed into descriptive statistics, ANOVA and pearson correlation coefficient with SPSS/WIN18.0. The average frequency and the average time of hand washing were 8.7 times a day and 18.5 sec respectively. The average frequency of hand washing education was 2.4 times. Soap bar was most frequently used as a hands detergent and paper towel as a dry method.. The Frequency and the time(sec) of hand washing increased significantly in the following provisions: above 6 times hand washing education, practical education, decontaminating agent soap, and use of paper towel. Knowledge, attitude and performance on hand washing increased significantly in the following variable : women, practice at upper grade general hospital, above 11 times hand washing a day, above 16secs hand washing, above 6 times hand washing education, practical education, decontaminating agent soap, and use of paper towel. Finally, there was significantly difference among the knowledge, attitude, and performance of hand washing. The result of this study indicates a necessity for developing education programs consistently to improve knowledge, attitude, and performance of hand washing.