• Title/Summary/Keyword: Attitude determination GPS/INS Integration

Search Result 9, Processing Time 0.023 seconds

Attitude Determination GPS/INS Integration System Design Using Triple Difference Technique

  • Oh, Sang-Heon;Hwang, Dong-Hwan;Park, Chan-Sik;Lee, Sang-Jeong
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.615-625
    • /
    • 2012
  • GPS attitude outputs or carrier phase observables can be effectively utilized to compensate the attitude error of the strapdown inertial navigation system. However, when the integer ambiguity is not correctly resolved and/or a cycle slip occurs, an erroneous GPS output can be obtained. If the erroneous GPS output is applied to the attitude determination GPS/INS (ADGPS/INS) integrated navigation system, the performance of the system can be degraded. This paper proposes an ADGPS/INS integration system using the triple difference carrier phase observables. The proposed integration system contains a cycle slip detection algorithm, in which the inertial information is combined. Computer simulations and flight test were performed to verify effectiveness of the proposed navigation system. Results show that the proposed system gives an accurate and reliable navigation solution even when the integer ambiguity is not correctly resolved and the cycle slip occurs.

An Attitude Determination GPS and INS Integration Scheme: Design and Flight Experiment (자세측정용 GPS/INS 통합시스템 구성 및 비행 시험)

  • Kim, Jeong Won;Hwang, Dong-Hwan;Lee, Sang Jeong;Park, Chansik;Oh, Sang Heon;Kim, Se Hwan;Ahn, Lee-Ki;Lee, Jang-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.8 no.2
    • /
    • pp.112-119
    • /
    • 2004
  • This paper proposes an attitude determination GPS/INS integrated system scheme for a UAV and presents experimental flight test results. The proposed system is designed as a part of an autopilot system and comprises a GPS attitude determination receiver, an off-the-shelf inertial measurement unit (IMU), and a navigation computer unit (NCU). UAV requires accurate attitude information for stable automatic flight control. The proposed system can provide accurate attitude information for the flight control computer (FCC) so that stable automatic flight control can be achieved. In order to verify the performance of the proposed scheme, an integrated navigation system has been developed. In order to evaluate the developed navigation system, the flight test has been performed. In the flight test, the developed system was shown to provide the position, the velocity and the attitude satisfactorily enough for stable flight control. The accuracy of the attitude information of the developed system was confirmed by comparing attitude of vertical gyro.

  • PDF

The AGPS/INS Integrated Navigation System Design Using Triple Difference Technique (삼중 차분 기법을 이용한 AGPS/INS 통합 항법 시스템 설계)

  • 오상헌;박찬식;이상정;황동환
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.9
    • /
    • pp.736-744
    • /
    • 2003
  • The GPS attitude output or carrier phase observables can be effectively utilized to compensate the attitude error of the strapdown inertial navigation system. However, when the integer ambiguity is not correctly resolved and/or a cycle slip occurs, an erroneous GPS output can be obtained. If the erroneous GPS information is directly applied to the AGPS/INS integration system, the performance of the system can be rapidly degraded. This paper proposes an AGPS/INS integration system using the triple difference carrier phase observables. The proposed integration system contains a cycle slip detection algorithm, in which inertial information is combined. Computer simulations and van test were performed to verify the proposed integration system. The results show that the proposed system gives an accurate and reliable navigation solution even when the integer ambiguity is not correct and the cycle slip occurs.

Design of a Low-Cost Attitude Determination GPS/INS Integrated Navigation System for a UAV (Unmanned Aerial Vehicle) (무인 비행체용 저가의 ADGPS/INS 통합 항법 시스템)

  • Oh Sang Heon;Lee Sang Jeong;Park Chansik;Hwang Dong-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.7
    • /
    • pp.633-643
    • /
    • 2005
  • An unmanned aerial vehicle (UAV) is an aircraft controlled by .emote commands from ground station and/o. pre-programmed onboard autopilot system. A navigation system in the UAV provides a navigation data for a flight control computer(FCC). The FCC requires accurate and reliable position, velocity and attitude information for guidance and control. This paper proposes an ADGPS/INS integrated navigation system for a UAV. The proposed navigation system comprises an attitude determination GPS (ADGPS) receive., a navigation computer unit, and a low-cost commercial MEMS inertial measurement unit(IMU). The navigation algorithm contains a fault detection and isolation (FDI) function fur integrity. In order to evaluate the performance of the proposed navigation system, two flight tests were preformed using a small aircraft. The first flight test was carried out to confirm fundamental operation of the proposed navigation system and to check the effectiveness of the FDI algorithm. In the second flight test, the navigation performance and the benefit of the GPS attitude information were checked in a high dynamic environment. The flight test results show that the proposed ADGPS/INS integrated navigation system gives a reliable performance even when anomalous GPS data is provided and better navigation performance than a conventional GPS/INS integration unit.

Attitude Determination GPS/INS Integrated Navigation System with FDI Algorithm for a UAV

  • Oh Sang Heon;Hwang Dong-Hwan;Park Chansik;Lee Sang Jeong;Kim Se Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.8
    • /
    • pp.1529-1543
    • /
    • 2005
  • Recently an unmanned aerial vehicle (UAV) has been widely used for military and civil applications. The role of a navigation system in the UAV is to provide navigation data to the flight control computer (FCC) for guidance and control. Since performance of the FCC is highly reliant on the navigation data, a fault in the navigation system may lead to a disastrous failure of the whole UAV. Therefore, the navigation system should possess a fault detection and isolation (FDI) algorithm. This paper proposes an attitude determination GPS/INS integrated navigation system with an FDI algorithm for a UAV. Hardware for the proposed navigation system has been developed. The developed hardware comprises a commercial inertial measurement unit (IMU) and the integrated navigation package (INP) which includes an attitude determination GPS (ADGPS) receiver and a navigation computer unit (NCU). The navigation algorithm was implemented in a real-time operating system with a multi-tasking structure. To evaluate performance of the proposed navigation system, a flight test has been performed using a small aircraft. The test results show that the proposed navigation system can give accurate navigation results even in a high dynamic environment.

A Development of CDGPS/INS integrated system with 3-dimensional attitude determination GPS Receiver (3차원 자세 결정용 GPS 수신기를 이용한 CDGPS/INS 통합 시스템 설계)

  • Lee, Ki-Won;Lee, Jae-Ho;Seo, Hung-Seok;Sung, Tae-Kyung
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2075-2077
    • /
    • 2001
  • For precise positioning, GPS carrier measurements are often used. In this case, accurate position having mm${\sim}$cm error can be obtained. For 3D positioning, in CDGPS, more than five carrier phase measurements are required. When GPS signals are blocked or carrier phase measurements are insufficient, it cannot provide positioning solution. By integrating CDGPS with INS, continuity of positioning solution can be guaranteed. However, when a vehicle moves in low speed or in stationary, the CDGPS/INS integrated system is difficult to compensate INS attitude errors because GPS velocity error become relatively lange. In this paper, we used the 3D attitude GPS receiver to compensate the INS attitude error. By field experiments, it is shown that the proposed integration system maintains the navigation performance even when a vehicle is in low speed or GPS signal is blocked for a period of time.

  • PDF

THE DESIGN OF DGPS/INS INTEGRATION FOR IMPLEMENTATION OF 4S-Van (4S-Van 구현을 위한 DGPS/INS 통합 알고리즘 설계)

  • 김성백;이승용;김민수;이종훈
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.4
    • /
    • pp.351-366
    • /
    • 2002
  • In this study, we developed low cost INS and (D)GPS integration for continuous attitude and position and utilized it for the determination of exterior orientation parameters of image sensors which are equipped in 4S-Van. During initial alignment process, the heading information was extracted from twin GPS and fine alignment with Kalman filter was performed for the determination of roll and pitch. Simulation and van test were performed for the performance analysis. Based on simulation result, roll and pitch error is around 0.01-0.03 degrees and yaw error around 0.1 degrees. Based on van test, position error in linear road is around 10 cm and curve around 1 m. Using direct georeferencing method, the image sensor's orientation and position information can be acquired directly from (D)GPS/INS integration. 4S-Van achieved 3D spatial data using (D)GPS/INS and image data can be applied to the spatial data integration and application such as contemporary digital map update, road facility management and Video GIS DB.

Van Test for GAK NM (GPS Adapter Kit Navigation Module) Using High Performance INS (고정밀 INS를 이용한 GAK(GPS Adapter Kit) 항법 모듈의 차량 시험)

  • Oh, Sang-Heon;Son, Seok-Bo;Kwon, Seung-Bok;Shin, Don-Ho;Lee, Sang-Jeong;Park, Chan-Sik;Hwang, Dong-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.260-267
    • /
    • 2007
  • GPS adapter kit (GAK) is a GPS/INS guided range extension system to improve the accuracy and availability of existing dumb bombs. In this paper, a van test result of GPS/INS navigation module (NM) for guided bomb with GAK has been presented. The NM consists of a commercial MEMS IMU, embedded GPS receiver and navigation computer unit (NCU). The GPS receiver of NM was designed to use multiple antennas for satellite visibility and GPS attitude determination. The real-time navigation software was designed by modularized structure to guarantee the maintainability and extensibility. In order to evaluate the performance of the NM, a van test was preformed by using a high performance INS - Honeywell H-726 MAPS(Modular Azimuth Position System).The van test results show that the GAK NM with GPS attitude measurement gives better navigation performance than a conventional GPS/INS integration and good coasting capabilities under jamming environment.

Multiple Reference Network Data Processing Algorithms for High Precision of Long-Baseline Kinematic Positioning by GPS/INS Integration (GPS/INS 통합에 의한 고정밀 장기선 동적 측위를 위한 다중 기준국 네트워크 데이터 처리 알고리즘)

  • Lee, Hung-Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1D
    • /
    • pp.135-143
    • /
    • 2009
  • Integrating the Global Positioning System (GPS) and Inertial Navigation System (INS) sensor technologies using the precise GPS Carrier phase measurements is a methodology that has been widely applied in those application fields requiring accurate and reliable positioning and attitude determination; ranging from 'kinematic geodesy', to mobile mapping and imaging, to precise navigation. However, such integrated system may not fulfil the demanding performance requirements when the baseline length between reference and mobil user GPS receiver is grater than a few tens of kilometers. This is because their positioning/attitude determination is still very dependent on the errors of the GPS observations, so-called "baseline dependent errors". This limitation can be remedied by the integration of GPS and INS sensors, using multiple reference stations. Hence, in order to derive the GPS distance dependent errors, this research proposes measurement processing algorithms for multiple reference stations, such as a reference station ambiguity resolution procedure using linear combination techniques, a error estimation based on Kalman filter and a error interpolation. In addition, all the algorithms are evaluated by processing real observations and results are summarized in this paper.