• 제목/요약/키워드: Attitude Maneuver

검색결과 80건 처리시간 0.028초

Lyapunov 재설계 기법을 이용한 우주비행체 강인 자세제어기 설계 (A Robust Attitude Controller Design Using Lyapunov Redesign Technique for Spacecraft)

  • 남헌성;유준
    • 제어로봇시스템학회논문지
    • /
    • 제8권4호
    • /
    • pp.313-318
    • /
    • 2002
  • A robust attitude controller using Lyapunov redesign technique for spacecraft is proposed. In this controller, qua- ternion feedback is considered to have the attitude maneuver capability very close to the eigen-axis rotation. The controller consists of three parts: the nominal feedback parts which is a PD-type controller for the nominal system without uncertainties, the additional term compensating for the gyroscopic motion, and the third part for ensuring robustness to uncertainties. Lyapunov stability criteria is applied to stability analysis. The performance of the proposed controller is demonstrated via computer simulation.

충돌 자세각 제한조건을 갖는 종단 유도를 위한 시변 편향 비례항법 (Time-varying biased proportional navigation for terminal guidance with impact attitude angle constraint)

  • 김병수;이보형;이장규;김삼수;조현진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.355-358
    • /
    • 1996
  • The primary objective of guidance system is to generate suitable commands so that the pursuer comes closer to its target. It is necessary, however, in the guidance of a certain pursuer that the attitude angle at impact should be within a prescribed range in addition to specification on the miss distance. These guidance requirements can not be satisfied by the general guidance laws developed for miss distance minimization. Compared with the demand in many applications, the guidance laws dealing with impact attitude angle constraint are not easily found. In this paper, biased PNG laws are proposed to obtain the guidance purposes. By Lyapunov method, it is shown that the pursuer can intercept the target with a prescribed attitude angle under the assumption that the pursuer is sufficiently fast and the target maneuver is negligible. The simulation results are presented to demonstrate the performance of the suggested guidance laws.

  • PDF

Accelerometer Mixed Algorithm Using Fuzzy Technique

  • Jin, Yong;Cho, Sung-Yun;Park, Chan-Gook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.141.6-141
    • /
    • 2001
  • This paper presents the attitude algorithm using Fuzzy technique to mix gyro information with accelerometer. The attitude angle calculated by the low-cost gyros only increases its error with time rapidly because of the integration process of the algorithm and large sensor error. It is known that the accelerometer output includes the attitude information of a vehicle and its information is more effective during low dynamic maneuver. Therefore it is needed to combine two information appropriately for obtaining the attitude information from low-cost MEMS inertial sensors. Because Fuzzy logic is very effective to make a decision of maneuvering state, it is applied to the mixed algorithm. It is shown by experiment ...

  • PDF

횡방향 기동을 하는 위성발사체의 3차원 궤적최적화와 직접식 유도기법 (3-Dimensional Trajectory Optimization and Explicit Guidance for a Satellite Launch Vehicle with Yaw Maneuver)

  • 노웅래;김유단;박정주;탁민제
    • 제어로봇시스템학회논문지
    • /
    • 제8권7호
    • /
    • pp.613-623
    • /
    • 2002
  • Ascent trajectory optimization and explicit guidance problems for a satellite launch vehicle with yaw maneuver in a 3-dimension are considered. The trajectory optimization problem with boundary conditions is formulated as a nonlinear programming problem by parameterizing the inertial pitch and yaw attitude control variables, and is solved by using the SQP algorithm. The flight constraints such as gravity-turn and range safety conditions are imposed. An explicit inertial guidance algorithm in the exoatmospheric phase is also presented. The guidance algorithm provides steering command and time-to-go value directly using the current states of the vehicle and the desired orbit insertion conditions. The liquid propelled Delta 2910 launch vehicle is used as a numerical model.

Time Optimal Attitude Maneuver of Three-Axis Spacecraft with only Magnetic Toquer

  • K.M. Roh;Park, K.H.;Kim, J.H.;Lee, Sanguk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.92.2-92
    • /
    • 2001
  • This paper presents the time optimal reorientation solution of three-axis spacecraft which has only three magnetic torquers. It has been very difficult problem because the magnetic torquer generates only perpendicular to Earth magnetic field vector. In this paper, minimum-time solution using only magnetic torquer is solved using collocation method and nonlinear programming solver NPSOL. IGRF Earth magnetic field model used to simulate magnetic field. The result is verified by comparing to the result of numerical integration. The solution is obtained for the various reorientation maneuver of three axes rigid spacecraft. And the results show that all three axes of rigid spacecraft are controlled effectively only by magnetic torqure.

  • PDF

정상 임무운용 상태에서 다목적실용위성 2호 탑재체에 대한 태양 입사각 분석 (SUN INCIDENCE ANGLE ANALYSIS OF KOMPSTAT-2 PAYLOAD DURING NORMAL MISSION OPERATIONS)

  • 김응현;용기력;이상률
    • Journal of Astronomy and Space Sciences
    • /
    • 제17권2호
    • /
    • pp.309-316
    • /
    • 2000
  • KOMPSAT-2 will carry MSC(Multi-Spectral Camera) which provides 1m resolution panchromatic and 4m resolution multi-spectral images at the altitude of 685km sun-synchronous mission orbit. The mission operation of KOMSPAT-2 is to provide the earth observation using MSC with nadir pointing. KOMPSAT-2 will also have the capability of roll/pitch tilt maneuver using reaction wheel of satellite as required. In order to protect MSC from thermal distortion as well as direct sunlight, MSC shall be operated within the constraint of sun incidence angle. It is expected that the sunlight will not violate the constraint of sun incidence angle for normal mission operations without roll/pitch maneuver. However, during roll/pitch tilt operations, optical module of MSC may be damaged by the sunlight. This study analyzed sun incidence angle of payload using KOMPSAT-2 AOCS (Attitude and Orbit Control Subsystem) Design and Performance Analysis Soft ware for KOMPSAT-2 normal mission operations.

  • PDF

Development of a Hardware-in-the-loop Simulator for Spacecraft Attitude Control Using Thrusters

  • Koh, Dong-Wook;Park, Sang-Young;Kim, Do-Hee;Choi, Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • 제26권1호
    • /
    • pp.47-58
    • /
    • 2009
  • In this study, a Hardware-In-the-Loop (HIL) simulator using thrusters is developed to validate the spacecraft attitude system. To control the attitude of the simulator, eight cold gas thrusters are aligned with roll, pitch and yaw axis. Also linear actuators are applied to the HIL simulator for automatic mass balancing to compensate the center of mass offset from the center of rotation. The HIL simulator consists of an embedded computer (Onboard PC) for simulator system control, a wireless adapter for wireless network, a rate gyro sensor to measure 3-axis attitude of the simulator, an inclinometer to measure horizontal attitude, and a battery set to supply power for the simulator independently. For the performance test of the HIL simulator, a bang-bang controller and Pulse-Width Pulse-Frequency (PWPF) modulator are evaluated successfully. The maneuver of 68 deg. in yaw axis is tested for the comparison of the both controllers. The settling time of the bang -bang controller is faster than that of the PWPF modulator by six seconds in the experiment. The required fuel of the PWPF modulator is used as much as 51% of bang-bang controller in the experiment. Overall, the HIL simulator is appropriately developed to validate the control algorithms using thrusters.

Sliding Mode Attitude Control for Momentum-Biased Spacecraft

  • Bang, Hyo-Choong;Loh, Young-Hwan
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제3권2호
    • /
    • pp.13-23
    • /
    • 2002
  • In this paper, we present a sliding mode control strategy for the re-orientation maneuver of rigid spacecraft containing rotating wheels. The wheels are considered as internal devices, and external inputs are employed for generation of control commands. The formulation is developed for a general case while particular example is applied to pitch bias momentum spacecraft with a single momentum wheel. The resultant control commands are used to take the gyroscopic effects into account which are caused by the rotating wheels. The controller designed demonstrates that the nutational motion of the pitch bias momentum spacecraft is effectively controlled. It is also assumed that the external control torque device is of on-off nature, and pulse width modulation technique is applied to construct proper control torque history.

Attitude Control of Agile Spacecraft Using Momentum Exchange Devices

  • Lee, Hyun-Jae;Cho, Shin-Je;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제7권2호
    • /
    • pp.14-25
    • /
    • 2006
  • This paper is focused on designing an implementable control law to perform spacecraft various missions using momentum exchange devices such as reaction wheels(RWs) and control moment gyros(CMGs). A compact equation of motion of a spacecraft installed with various momentum exchange devices is derived in this paper. A hybrid control law is proposed for precision attitude control of agile spacecraft. The control law proposed in this paper allocates control torque to the CMGs and the RWs adequately to satisfy the precision attitude control and large angle maneuver simultaneously. The saturation problem of reaction wheels and the singularity problem of control moment gyros are considered. The problems are successfully resolved by using the proposed hybrid closed loop control law. Finally, the proposed hybrid control law is demonstrated by numerical simulations.

Satellite Attitude Control with a Modified Iterative Learning Law for the Decrease in the Effectiveness of the Actuator

  • Lee, Ho-Jin;Kim, You-Dan;Kim, Hee-Seob
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제11권2호
    • /
    • pp.87-97
    • /
    • 2010
  • A fault tolerant satellite attitude control scheme with a modified iterative learning law is proposed for dealing with actuator faults. The actuator fault is modeled to reflect the degradation of actuation effectiveness, and the solar array-induced disturbance is considered as an external disturbance. To estimate the magnitudes of the actuator fault and the external disturbance, a modified iterative learning law using only the information associated with the state error is applied. Stability analysis is performed to obtain the gain matrices of the modified iterative learning law using the Lyapunov theorem. The proposed fault tolerant control scheme is applied to the rest-to-rest maneuver of a large satellite system, and numerical simulations are performed to verify the performance of the proposed scheme.