• 제목/요약/키워드: Attitude Control Algorithm

검색결과 177건 처리시간 0.03초

자장계를 이용한 인공위성의 자세결정 알고리즘 (Spacecraft Attitude Determination Algorithm Using Magnetometer)

  • 민현주;김인중;김진호;박춘배;용기력;이승우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.342-342
    • /
    • 2000
  • We present 3-axis stabilized spacecraft attitude determination algorithm using the magnetometer. The magnetometer has been used as a reliable, light-weight and inexpensive sensor in attitude determination and reaction wheel momentum dumping system. Recent studies have attempted to use the magnetometer when other attitude sensor, such as star tracker, fails. The differences between the measured and computed the Earth's magnetic field components are spacecraft attitude errors. In this paper, we propose extended Kalman filter(EKF) to determine spacecraft attitude with the magnetometer data and gyro-measured body rates. We develop and simulate this algorithm using MATLAB/SIMULINK. This algorithm can be used as a backup attitude determination system.

  • PDF

4각 보행로보트의 무른 지형 보행제어 알고리듬 (A Control Algorithm for Quadruped Walking Robot Over Unknown Soft Ground)

  • 심갑종;이상희
    • 산업기술연구
    • /
    • 제11권
    • /
    • pp.65-72
    • /
    • 1991
  • In this paper, a control algorithm is discussed when the quadruped walking robot walks over the unknown soft ground. Firstly, it estimated the relationship between the foot force and the ground sinkage at the leg-placing phase. Secondly, the generated soil property is applied to the leg-supporting phase. If the attitude angle is changed by incorrect ground sinkage compensation, the control algorithm adjusts the attitude angle using simplified orientation orientation matrix.

  • PDF

풍력발전기 진단 및 청소를 위한 로봇의 모델링 및 자세제어 (A Modeling and Attitude Control of an Inspection and Cleaning Robot for Wind Turbines)

  • 공진영;이재순;강연식;조백규
    • 제어로봇시스템학회논문지
    • /
    • 제20권9호
    • /
    • pp.922-929
    • /
    • 2014
  • Wind turbines are in the limelight in the alternative energy industry. However, they face frequent and various problems during operation. We focused on the supervising of the blades of a wind turbine. In this paper, we present the design of a maintenance robot that takes the size of wind turbine blades into consideration, so the general form of the robot is a square with four wires fixed to its vertices and to the nacelle. After the robot is placed near the nacelle, it moves along the blades. We also designed an attitude control algorithm for the robot to maintain its balance. Our control algorithm for the robot consists of roll and pitch attitude controllers and a height controller. Each controller was designed independently and then superposed together. We used simulations to verify our control algorithm.

Large slewing control of low earth orbit satellite

  • Rhee, S.W.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.44-48
    • /
    • 1994
  • A new method of quaternion feedback control for the attitude acquisition of spacecraft is suggested to limit the angular rates of rigid body which are not desirable and make a control algorithm complicate. New attitude acquisition control algorithm is evaluated and compared with the existing quaternion feedback control method for the large slewing maneuvers through simulations. The simulation results reveal that a new method is effective on limiting the angular rates of spacecraft.

  • PDF

Simulation of Spacecraft Attitude Measurement Data by Modeling Physical Characteristics of Dynamics and Sensors

  • Lee, Hun-Gu;Yoon, Jae-Cheol;Cheon, Yee-Jin;Shin, Dong-Seok;Lee, Hyun-Jae;Lee, Young-Ran;Bang, Hyo-Choong;Lee, Sang-Ryool
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1966-1971
    • /
    • 2004
  • As the remote sensing satellite technology grows, the acquisition of accurate attitude and position information of the satellite has become more and more important. Due to the data processing limitation of the on-board orbit propagator and attitude determination algorithm, it is required to develop much more accurate orbit and attitude determination, which are so called POD (precision orbit determination) and PAD (precision attitude determination) techniques. The sensor and attitude dynamics simulation takes a great part in developing a PAD algorithm for two reasons: 1. when a PAD algorithm is developed before the launch, realistic sensor data are not available, and 2. reference attitude data are necessary for the performance verification of a PAD algorithm. A realistic attitude dynamics and sensor (IRU and star tracker) outputs simulation considering their physical characteristics are presented in this paper, which is planned to be used for a PAD algorithm development, test and performance verification.

  • PDF

스트랩다운 비행자세(롤, 피치)측정장치의 가속도계 보조 혼합알고리즘 (An accelerometer aided mixing algorithm for strapdown attitude(roll, pitch) reference system)

  • 유재종;이장규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.54-58
    • /
    • 1989
  • The purpose of this paper is to develop a more accurate attitude algorithm with low grade gyro output. The proposed algorithm estimates attitudes by combining accelerometer and gyro output. For performance improvement of the algorithm, a method of velocity compensation is proposed for a better attitude estimation which is calculated from the accelerometer output. Velocity compensation is done by using Kalman Filter to estimate another velocity component.

  • PDF

변형된 오일러각 기반의 칼만필터를 이용한 자세 추정 성능 향상 (Performance Improvement of Attitude Estimation Using Modified Euler Angle Based Kalman Filter)

  • 강철우;유영민;박찬국
    • 제어로봇시스템학회논문지
    • /
    • 제14권9호
    • /
    • pp.881-885
    • /
    • 2008
  • To calculate the attitude in ARS(Attitude Reference System) using 3 gyros and 3 accelerometers, gyro drift must be compensated with accelerometer to avoid divergence of attitude error. Kalman filter is most popular method to integrate those two sensor outputs. In this paper, new Kalman filtering method is proposed for roll and pitch attitude estimation. New states are defined to make linear equation and algorithm for changing Kalman filter parameters is proposed to ignore disturbances of acceleration. This algorithm can be easily applied to low cost ARS.

확장칼만필터를 이용한 수중 운동체의 자세계산 시스템 설계 (The design of attitude reference system for underwater vehicle using extended kalman filter)

  • 홍현수;박찬국;이장규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1352-1355
    • /
    • 1997
  • This paper presents the algorithm for estimating the attitude of an underwater vehicle using EFK. The system model is designed by linerizing the nonlinear Euler angle differential equation and the measurements is a speed logger output. The simulation result shows that the estimation lagorithm is adequate for decreasing attitude errors that grow abruptly during the motion with acceleration and rotation. It also shows that we can adapt the algorithm for compensating initial attitude errors generated after initial leveling.

  • PDF

Windowed Quaternion Estimator For Gyroless Spacecraft Attitude Determination

  • Kim, Injung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.167.5-167
    • /
    • 2001
  • Single point attitude determination method provides an optimal attitude minimizing the Wahba loss function. However, for the insufficient number of measurement vectors, the conventional single point methods has no unique solution. Thus, we introduce the sequential method to and an optimal attitude minimizing the windowed loss function. In this paper, this function is de ned as the sum of square errors for all measurement vectors within the axed sliding window. For simple implementation, the proposed algorithm is rewritten as a recursive form. Moreover, the covariance matrix is derived and expressed as a recursive form. Finally, we apply this algorithm to the attitude determination system with three LOS measurement sensors.

  • PDF

Study on Satellite Vibration Control Using Adaptive Algorithm

  • Oh, Choong-Seok;Oh, Se-Boung;Bang, Hyo-Choong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2120-2125
    • /
    • 2005
  • The principal idea of vibration isolation is to filter out the response of the system over the corner frequency. The isolation objectives are to transmit the attitude control torque within the bandwidth of the attitude control system and to filter all the high frequency components coming from vibration equipment above the bandwidth. However, when a reaction wheels or control momentum gyros control spacecraft attitude, vibration inevitably occurs and degrades the performance of sensitive devices. Therefore, vibration should be controlled or isolated for missions such as Earth observing, broadcasting and telecommunication between antenna and ground stations. For space applications, technicians designing controller have to consider a periodic vibration and disturbance to ensure system performance and robustness completing various missions. In general, past research isolating vibration commonly used 6 degree order freedom isolators such as Stewart and Mallock platforms. In this study, the vibration isolation device has 3 degree order freedom, one translational and two rotational motions. The origin of the coordinate is located at the center-of-gravity of the upper plane. In this paper, adaptive notch filter finds the disturbance frequency and the reference signal in filtered-x least mean square is generated by the notch frequency. The design parameters of the notch filter are updated continuously using recursive least square algorithm. Therefore, the adaptive filtered-x least mean square algorithm is applied to the vibration suppressing experiment without reference sensor. This paper shows the experimental results of an active vibration control using an adaptive filtered-x least mean squares algorithm.

  • PDF