• 제목/요약/키워드: Attitude Control Algorithm

Search Result 177, Processing Time 0.029 seconds

Development of Underwater Cleaning Robot Control Algorithm for Cleanup Efforts in Industrial Area (산업현장 침전물 청소작업용 수중청소로봇 제어 알고리즘 기술 개발)

  • Lee, Jung-Woo;Lee, Jong-Deuk;Choi, Young-Ho;Han, Kyung-Lyong;Suh, Jin-Ho
    • Journal of Power System Engineering
    • /
    • v.21 no.4
    • /
    • pp.26-33
    • /
    • 2017
  • In this paper, we developed a control algorithm to maximize the cleaning performance and the cleaning efficiency of the underwater cleaning robot platform which has been developed for various cistern environment in the industrial field. Through these research and development, we have presented the operation and application of underwater cleaning robots that have been developed, and contributed to commercialization. Finally, this results were verified the effectiveness through actual field experiments.

Biased PNG for Approximate Target Adaptive Guidance

  • Song chanho;Kim, philsung;Jun byungeul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.141.2-141
    • /
    • 2001
  • An approximate target adaptive guidance algorithm(TAG) is proposed on the basis of the assumption that angular acceleration of missile to target line-of-sight and start time for TAG can be obtained by IR seeker. The algorithm does not use any target state estimator. Instead, it avoids the problem of determining target attitude by using the observation that the missile using LOS rate guidance is nearly on the collision course in the later point of engagement. Computer simulation results show that the proposed algorithm can effectively perform target adaptive guidance.

  • PDF

The effect of the dynamic environments on the performance of SDARS (동적환경이 스트랩다운 비행자세측정장치의 성능에 미치는 영향)

  • 신용진;전창배;오문수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.658-662
    • /
    • 1988
  • The performance of a strapdown attitude reference system(SDARS) under dynamic environments was analyzed by means of computer simulation. The study is aimed toward the performance evaluation in the presence of translational or angular vibration during 20 sec of flight time. The simulation was based on the error model of rate gyro, and Euler angle algorithm was employed to compute the attitude.

  • PDF

A robust controller design for attitude control of hovering vehicle (수직부상기의 자세제어를 위한 강인한 제어기의 설계)

  • 최연욱;이형기
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.12
    • /
    • pp.41-49
    • /
    • 1997
  • This paper deals with the attitude control of a self-made VTOL vehicle which is round shape and has four fans and motors. Although hovering mechanisms are suitable for field work at a mountainous region or a building site etc., it is known that modeling the structure of the plant is quite difficult due to its unstable or uncertain characteristics. So, a robust controller is requried in order to cope with these uncertainties. WE first model the structure of the plant under the actual hovering setting and then determine the uncertainty of the acquired mathematical model by using system identification method as exactly as possible. We adopt the $H^{\infty}$ theory as a control algorithm because of its availability, and the structure of two-degree-of-freedom is used as a basic feedback control system to improve the transient response of the plant. Finally, we show the appropriateness of the designed controller through simulations and experiments. That is, the proposed VTOL system is able to maintain its roubust performance in spite of parameter variations and existing disturbances..

  • PDF

Attitude Control of Model Helicopter using PID Neural Natworks Controller (PID 신경망 제어기를 이용한 모형 헬리콥터의 자세 제어)

  • Park, Doo-Hwan;Lee, Joon-Tark;Ha, Hong-Gon
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.534-536
    • /
    • 1998
  • The helicopter system is non-linear and complex. Futhermore, because of absence of accurate mathematical model, it is difficult accurately to control its attitude. therefore, we propose a PID Neural Networks control technique to control efficiently its elevation angle and azimuth one. The coefficients of PID controller are automatically adjusted by the back-propagation algorithm of a neural network. The simulation results using MATLAB are introduced.

  • PDF

A Study on Pose Control for 2 wheel Robot using ARS (ARS를 이용한 2바퀴 로봇의 자세 제어에 관한 연구)

  • Kang, Jin Gu
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.1
    • /
    • pp.73-78
    • /
    • 2013
  • In this paper, configuration control for the Horizontal Maintenance of the 2 wheel robot has been studied using ARS(Attitude Refrence System). The 2 wheel robot technique is getting attention and there have been many researches on the seg-way since the US. Using its 2 freedom, a 2 wheel robot can move in various modes and Our robot performs goal reaching ARS.2 wheel robot fall down to the forward or reverse direction to converge to the stable point. Kalman Filter is normally used for the algorithm and numerous research is progressing at the moment. To calculate the attitude in ARS using 2 axis gyro(roll, pitch) and 3 axis accelerometers (x, y, z). In this paper we present a two wheel robot system for an autonomous mobile robot. This paper realized the robot control method which is much simpler but able to get desired performance by using the ARS control.

Psi Angle Error Model based Alignment Algorithm for Strapdown Inertial Navigation System (Psi각 오차모델 기반 스트랩다운 관성 항법 시스템의 정렬 알고리즘)

  • Park, Sul-Gee;Hwang, Dong-Hwan;Lee, Sang-Jeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.2
    • /
    • pp.183-189
    • /
    • 2011
  • An alignment algorithm for strapdown inertial navigation systems is proposed, in which the psi angle error model is utilized. The proposed alignment algorithm is derived from the Psi angle error model which has been widely used in real-time navigation systems. The equation for expecting steady state alignment error is also derived. The proposed algorithm was verified through real-time experiments. Experimental results show that the proposed algorithm can be used in the inertial navigation system and GNSS/INS integrated navigation system to get an initial attitude of the vehicle.

독립모달공간 제어기법에서 작동기 수의 절감에 대한 연구

  • 황재혁;김준수;박명호
    • Journal of KSNVE
    • /
    • v.7 no.2
    • /
    • pp.273-279
    • /
    • 1997
  • Reduction of number of actuators for independent modal space control In this paper, a new modified independent modal space control (IMSC), which relaxes the fundamental hardware limitation of IMSC, is suggested to handle the vibration and attitude control problem for flexible large structures. This method has adapted a new switching algorithm between controlled modes and a novel design technique for modal control force. The main advantage of this method is to minimize the discontinuity of the modal control forces and to assure the asymptotic stability of the closed-loop systems. This process is shown to be simple and efficient in a realistic example of vibration control of a cantiloever beam. It has been found that the modified IMSC suggested in this paper, which can reduce the number of actuators, is highly excellent compared to other previous methods in terms of the performance and stability of the vibration control systems.

  • PDF

An Experimental Study on Coordinates Tracker Realization for EOTS Slaved to the Radar of a Helicopter (전자광학추적장비의 좌표추적기 구현 및 헬리콥터 탑재 레이더 연동시험에 관한 연구)

  • Jung Seul;Park Ju-Kwang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.4
    • /
    • pp.369-377
    • /
    • 2005
  • This paper describes the realization of a coordinates tracking algorithm for an EOTS (Electro-Optical Tracking System). The EOTS stabilizes the image sensors, tracks targets automatically, and provides navigation capability for vehicles. The coordinates tracking algorithm calculates the azimuth and the elevation angle of an EOTS using the inertial navigation system and the attitude sensors of the vehicle, so that LOS designates the target coordinates which are generated by a Radar. In the error analysis, the unexpected behaviors of an EOTS due to the time delay and deadbeat of the digital signals of the vehicle equipments are anticipated and the countermeasures are suggested. The application of this algorithm to an EOTS will improve the operational capability by reducing the time which is required to find the target and support flight especially in the night time flight and the poor weather condition.

Laser-based Relative Navigation Using GPS Measurements for Spacecraft Formation Flying

  • Lee, Kwangwon;Oh, Hyungjik;Park, Han-Earl;Park, Sang-Young;Park, Chandeok
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.387-393
    • /
    • 2015
  • This study presents a precise relative navigation algorithm using both laser and Global Positioning System (GPS) measurements in real time. The measurement model of the navigation algorithm between two spacecraft is comprised of relative distances measured by laser instruments and single differences of GPS pseudo-range measurements in spherical coordinates. Based on the measurement model, the Extended Kalman Filter (EKF) is applied to smooth the pseudo-range measurements and to obtain the relative navigation solution. While the navigation algorithm using only laser measurements might become inaccurate because of the limited accuracy of spacecraft attitude estimation when the distance between spacecraft is rather large, the proposed approach is able to provide an accurate solution even in such cases by employing the smoothed GPS pseudo-range measurements. Numerical simulations demonstrate that the errors of the proposed algorithm are reduced by more than about 12% compared to those of an algorithm using only laser measurements, as the accuracy of angular measurements is greater than $0.001^{\circ}$ at relative distances greater than 30 km.