• Title/Summary/Keyword: Attenuation by Rainfall

Search Result 30, Processing Time 0.023 seconds

Analysis Study of Mobile LiDAR Performance Degradation in Rainfall Based on Real-World Point Cloud Data (강우 시 모바일 LiDAR 성능저하에 대한 실측 점군데이터 기반 해석 연구)

  • Youngmin Kim;Bumjin Park
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.5
    • /
    • pp.186-198
    • /
    • 2024
  • LiDAR is a key sensor used in autonomous vehicles, and its range of applications is expanding because it can generate 3D information and is relatively robust to various environmental factors. However, it is known that LiDAR performance is degraded to some extent due to signal attenuation and scattering by raindrops during rain, and thus the need for analysis of factors affecting rainfall in road environment detection and utilization using LiDAR has been confirmed. In this study, we analyze how signal attenuation and scattering, known as factors degrading LiDAR performance during rain, cause performance degradation based on real data. We acquire data using facilities that utilize high-luminosity retroreflective sheeting in indoor chamber where quantity of rainfall can be controlled, and quantitatively confirm the degradation of LiDAR performance during rain by interpreting it from the perspective of signal attenuation and scattering. According to the point cloud distribution and performance analysis results, LiDAR performance deteriorates due to signal attenuation and scattering caused by rain. Specifically, the quantitative performance analysis shows that LiDAR experiences a decrease in intensity primarily due to signal attenuation from rain, as well as a reduction in NPC and intensity due to signal scattering effects, along with an increase in measurement distance error.

Study on Rainfall Characteristics for the Millimeter-wave Communication Systems-Comparisons of Rainfall rate data from Several observation methods.

  • Chung, H.S.;Song, B.H.;Lee, J.H.;Park, K.M.;Lee, K.A.
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.132-134
    • /
    • 1999
  • Rainfall characteristics for designing the optimum millimeter-wave communication systems from two rainfall data set was analyzed. Two rainfall data sets were compared; one-minute rainfall rate data, one-hour synoptic observation data. Each data set has different observation method, sampling frequency. We looked for tendency and quality confluence between two data sets. We showed several results using one-minute rainfall data by millimeter-wave attenuation model. A climatological one-minute rainfall rate data set over Korean Peninsula will be made after data quality control procedure

  • PDF

Analysis of Fiber-optic Link Budget for Optically fed Wireless Communication

  • Kim, Jung-Tae
    • Journal of information and communication convergence engineering
    • /
    • v.1 no.1
    • /
    • pp.35-38
    • /
    • 2003
  • Analyses of performance of wireless broadband communication systems employing fiber-optic link have presented. We have analyzed CNR penalty to evaluate system performance by taking into account, radio link considering rainfall attenuation, and optical link considering several carrier-to-noise ratio versus the optical modulation index.

The design of transmitting antenna on the optical satelite communication up-link in rain (광위성 통신시 업링크에서 강우에 따른 송신 안테나 설계)

  • 정진호
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.6
    • /
    • pp.75-82
    • /
    • 1997
  • Today's wireless communication needs the super-high speed for picture transmission as well as voice. The optical communication with the very wide bandwidth is suitable for this demand. To fulfill the optical wireless communication, however, the atmospheric attenuation in rainy weather condition must be overcome. In the optical satellite up-link communication between geo-satellite and earth station, the factors of attenuation are turbulence, pointing error, scattering, and so on. The most serious factor for these is the scattering by rain. Under the weather conditiion of rain and cloud, in this paper, the atmospheic attenuation which affects the optical satellite up-link communication was considered, and the optimum idameter of the optical satellite transmitting antenna in the earth station versus elevation angles, data rates and rainfall rates was presented.

  • PDF

Design of Optimal Hop Length for Fixed Radio Relay Links above 20GHz in Korea (20GHz 이상 대역에서의 국내 고정 무선중계 시스템의 최적 경로길이 설계)

  • 이형수;김혁제;신동근
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.7 no.3
    • /
    • pp.263-271
    • /
    • 1996
  • The frequency band above 20GHz is the great radio resource which has not been used. But the attenuation by atmosphere is so large that the radio systems using this frequency band must have shorter hops. There are few studies of optimal hop length for these millimetric wave radio links in Korea. In this paper we analyzed the millimetric wave propagation characteristics in atmosphere and estimated rain attenuation which have a great effect on hop length. Furthermore, we present a rainfall rate(mm/h) of the cities including Seoul and Pusan using the data collected by several rainfall gauges. This paper presents a method of obtaining the optimum hop length for millimer wave radio links based on the rain rate date.

  • PDF

Hourly Rainfall Surface Prediction with Meteorological Radar Data (기상레이더 자료를 이용한 시우량곡면 예측)

  • 정재성;이재형
    • Water for future
    • /
    • v.29 no.3
    • /
    • pp.187-195
    • /
    • 1996
  • In this study, a methodology for the hourly prediction of rainfall surfaces was applied to the Pyungchang river basin at the upstream of South Han river with meteorological radar and ground rainfall data. The methods for the exclusion of abnormal echoes, and suppression of ground clutter, and the augmentation of attenuation effects associated with rainfall phenomena were reviewed, and the relationship between radar reflectivity (Z) and rainfall rate (R) was analyzed. The transformation of augmented radar reflectivities into the rdar rainfall surfaces was carried out, and afterward they were synthesized with the ground rainfall data generating the hourly rainfall surfaces. For the prediction of hourly rainfall surface, the moving factors of rainfall field estimated by the cross correlation coefficient method and the temporal variation of radar rainfall intensities were considered. The synthesized hourly rainfall surfaces were used to predict the hourly rainfall surfaces up to 3 hours in advance and subsequently the results were compared with the measured and the synthesized. It seems that the prediction method need to be verified with more data and be complemented further to consider the physical characteristics of rainfall field and the topography of the basin.

  • PDF

Comparison of Cloud Top Height Observed by a Ka-band Cloud Radar and COMS (Ka-band 구름레이더와 천리안위성으로 관측된 운정고도 비교)

  • Oh, Su-Bin;Won, Hye Young;Ha, Jong-Chul;Chung, Kwan-Young
    • Atmosphere
    • /
    • v.24 no.1
    • /
    • pp.39-48
    • /
    • 2014
  • This study provides a comparative analysis of cloud top heights observed by a Ka-band cloud radar and the Communication, Ocean and Meteorological Satellite (COMS) at Boseong National Center for Intensive Observation of severe weather (NCIO) from May 25, 2013 (1600 UTC) to May 27. The rainfall duration is defined as the period of rainfall from start to finish, and the no rainfall duration is defined as the period other than the rainfall duration. As a result of the comparative analysis, the cloud top heights observed by the cloud radar have been estimated to be lower than that observed by the COMS for the rainfall duration due to the signal attenuation caused by raindrops. The stronger rainfall intensity gets, the more the difference grows. On the other hand, the cloud top heights observed by the cloud radar have been relatively similar to that observed by the COMS for the no rainfall duration. In this case, the cloud radar can effectively detect cloud top heights within the range of its observation. The COMS indicates the cloud top heights lower than the actual ones due to the upper thin clouds under the influence of ground surface temperature. As a result, the cloud radar can be useful in detecting cloud top heights when there are no precipitation events. The COMS data can be used to correct the cloud top heights when the radar gets beyond the valid range of observation or there are precipitation events.

PRELIMINARY PROJECT OF WATER SUPPLY FOR NDATA FARM, MALAWA

  • Min-Shun Lee;Hung-Kwai Chen;Sheng Liang;Ho-Shong Hou
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1615-1617
    • /
    • 2009
  • The water resources project of 320 Ha second stage reclamation, in which including an University City, out of 800 Ha Ndata Farm, Malawa, had been under studied in this research. The challenge of C value of runoff coefficient was obtained as 0.8, by introducing the attenuation factors method, proposed by second author, an IDF dimensionless method customary used in Taiwan, proposed by the third author, is translated further to solve the project design rainfall; Rational Method, thus, obtains 11.5 CMS as the 5 year recurrence storage. The final job, completed by the third author's on-site performance, includs field alignments and discussions with the trustee, Malawa President H. E. Dr. Bingu Wa Mutharika, when a special concern of anti-theft. In order to provide sufficient supply up to an amount of 44,000 M3 during April to November, the sketch package includes 6 measurements: one water barrage, one sluice gate, one intake, one sediment reservoir, one water reservoir, and 3199 Km long gravity-driving hydraulic pipe.

  • PDF

Rainfall Estimation by X-band Marine Radar (X밴드 선박용 레이더를 이용한 강우 추정)

  • Kim, Kwang-Ho;Kwon, Byung-Hyuk;Kim, Min-Seong;Kim, Park-Sa;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.4
    • /
    • pp.695-704
    • /
    • 2018
  • The rainfall cases were identified by rainfall estimation techniques which were developed by using X - band marine radar. A digital signal converter was used to convert the signal received from the marine radar into digital reflectivity information. The ground clutter signal was removed and the errors caused by beam attenuation and beam volume changes were corrected. The reflectivity showed a linear relationship with the rain gauge rainfall. Quantitative rainfall was estimated by converting the radar signal into an cartesian coordinate system. When the rainfall was recorded more than $5mm\;hr^{-1}$ at three automatic weather stations, the rain cell distribution on the marine radar was consistent with that of the weather radar operated by Korea meteorological Adminstration.

Rain Attenuation Prediction at Different Time Percentages for Ku, K, and Ka Bands Satellite Communication Systems over Nigeria

  • Orji Prince Orji;Obiegbuna Dominic Chukwuebuka;Okoro Eucharia Chidinma;Ugonabo Obiageli Josephine;Okezuonu Patrick Chinedu;Iyida Evaristus Uzochukwu;Ugwu Chukwuebuka Jude;Menteso Firew Meka;Ikechukwu Ugochukwu Chiemeka
    • Journal of Astronomy and Space Sciences
    • /
    • v.41 no.1
    • /
    • pp.25-33
    • /
    • 2024
  • This paper evaluates the influence of rainfall on propagated signal at different time exceedance percentages of an average year, over the climate zones of the country. Specifically, it demonstrates critical and non critical signal fade or signal outage time exceedance (0.001% to 1%) for Ku, K, and Ka-band systems in an average year. The study was carried out using meteorological data made available by the Nigerian Meteorological Agency (NiMet) over a period of 10 years (2009-2018). The four climate zones in the country were represented by five (5) locations; Maidugiri (warm desert climate), Sokoto (tropical dry climate), Port Harcourt (tropical monsoon climate), Abuja and Enugu (tropical savanna climate). The parameters were simulated into the International Telecommunications Union Recommended (ITU-R) models for rain attenuation over the tropics and results presented using MatLab and Origin Lab. Results of Ku band propagations showed that only locations in the tropical savanna and tropical monsoon climates experienced total signal outage for time percentage exceedance equal to or below 0.01% for both horizontal and vertical polarizations. At K band propagations, the five locations showed to have experienced signal outage at time exceedance equal to and below 0.01%, almost same was recorded for the Ka-band propagation. It was also observed that horizontal and vertical polarization of signal had slightly different rain attenuation values for the studied bands at the five locations, with horizontal polarization having higher values than vertical polarization.