• Title/Summary/Keyword: Attention network

Search Result 1,491, Processing Time 0.023 seconds

Manipulating Anisotropic Filler Structure in Polymer Composite for Heat Dissipating Materials: A Mini Review (방열소재로의 응용을 위한 고분자 복합소재 내 이방성 필러 구조 제어 연구동향)

  • Seong-Bae, Min;Chae Bin, Kim
    • Composites Research
    • /
    • v.35 no.6
    • /
    • pp.431-438
    • /
    • 2022
  • Efficient heat dissipation in current electronics is crucial to ensure the best performance and lifespan of the devices along with the users' safety. Materials with high thermal conductivity are often used to dissipate the generated heat from the electronics to the surroundings. For this purpose, polymer composites have been attracted much attention as they possess advantages rooted from both polymer matrix and thermally conductive filler. In order to meet the thermal conductivity required by relevant industries, composites with high filler loadings (i.e., >60 vol%) have been fabricated. At such high filler loadings, however, composites lose benefits originated from the polymer matrix. To achieve high thermal conductivity at a relatively low filler loading, therefore, constructing the heat conduction pathway by controlling filler structure within the composites may represent a judicious strategy. To this end, this review introduces several recent approaches to manufacturing heat dissipating materials with high thermal conductivity by manipulating thermally conductive filler structures in polymer composites.

Flight State Prediction Techniques Using a Hybrid CNN-LSTM Model (CNN-LSTM 혼합모델을 이용한 비행상태 예측 기법)

  • Park, Jinsang;Song, Min jae;Choi, Eun ju;Kim, Byoung soo;Moon, Young ho
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.4
    • /
    • pp.45-52
    • /
    • 2022
  • In the field of UAM, which is attracting attention as a next-generation transportation system, technology developments for using UAVs have been actively conducted in recent years. Since UAVs adopted with these technologies are mainly operated in urban areas, it is imperative that accidents are prevented. However, it is not easy to predict the abnormal flight state of an UAV causing a crash, because of its strong non-linearity. In this paper, we propose a method for predicting a flight state of an UAV, based on a CNN-LSTM hybrid model. To predict flight state variables at a specific point in the future, the proposed model combines the CNN model extracting temporal and spatial features between flight data, with the LSTM model extracting a short and long-term temporal dependence of the extracted features. Simulation results show that the proposed method has better performance than the prediction methods, which are based on the existing artificial neural network model.

An active learning method with difficulty learning mechanism for crack detection

  • Shu, Jiangpeng;Li, Jun;Zhang, Jiawei;Zhao, Weijian;Duan, Yuanfeng;Zhang, Zhicheng
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.195-206
    • /
    • 2022
  • Crack detection is essential for inspection of existing structures and crack segmentation based on deep learning is a significant solution. However, datasets are usually one of the key issues. When building a new dataset for deep learning, laborious and time-consuming annotation of a large number of crack images is an obstacle. The aim of this study is to develop an approach that can automatically select a small portion of the most informative crack images from a large pool in order to annotate them, not to label all crack images. An active learning method with difficulty learning mechanism for crack segmentation tasks is proposed. Experiments are carried out on a crack image dataset of a steel box girder, which contains 500 images of 320×320 size for training, 100 for validation, and 190 for testing. In active learning experiments, the 500 images for training are acted as unlabeled image. The acquisition function in our method is compared with traditional acquisition functions, i.e., Query-By-Committee (QBC), Entropy, and Core-set. Further, comparisons are made on four common segmentation networks: U-Net, DeepLabV3, Feature Pyramid Network (FPN), and PSPNet. The results show that when training occurs with 200 (40%) of the most informative crack images that are selected by our method, the four segmentation networks can achieve 92%-95% of the obtained performance when training takes place with 500 (100%) crack images. The acquisition function in our method shows more accurate measurements of informativeness for unlabeled crack images compared to the four traditional acquisition functions at most active learning stages. Our method can select the most informative images for annotation from many unlabeled crack images automatically and accurately. Additionally, the dataset built after selecting 40% of all crack images can support crack segmentation networks that perform more than 92% when all the images are used.

A Study on the Consumer Perception of Metaverse Before and After COVID-19 through Big Data Analysis (빅데이터 분석을 통한 코로나 이전과 이후 메타버스에 대한 소비자의 인식에 관한 연구)

  • Park, Sung-Woo;Park, Jun-Ho;Ryu, Ki-Hwan
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.287-294
    • /
    • 2022
  • The purpose of this study is to find out consumers' perceptions of "metaverse," a newly spotlighted technology, through big data analysis as a non-face-to-face society continues after the outbreak of COVID-19. This study conducted a big data analysis using text mining to analyze consumers' perceptions of metaverse before and after COVID-19. The top 30 keywords were extracted through word purification, and visualization was performed through network analysis and concor analysis between each keyword based on this. As a result of the analysis, it was confirmed that the non-face-to-face society continued and metaverse emerged as a trend. Previously, metaverse was focused on textual data such as SNS as a part of life logging, but after that, it began to pay attention to virtual reality space, creating many platforms and expanding industries. The limitation of this study is that since data was collected through the search frequency of portal sites, anonymity was guaranteed, so demographic characteristics were not reflected when data was collected.

Sound PSD Image based Tool Condition Monitoring using CNN in Machining Process (생산 공정에서 CNN을 이용한 음향 PSD 영상 기반 공구 상태 진단 기법)

  • Lee, Kyeong-Min
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.7
    • /
    • pp.981-988
    • /
    • 2022
  • The intelligent production plant called smart factories that apply information and communication technology (ICT) are collecting data in real time through various sensors. Recently, researches that effectively applying to these collected data have gained a lot of attention. This paper proposes a method for the tool condition monitoring based on the sound signal generated in machining process. First, it not only detects a fault tool, but also presents various tool states according to idle and active operation. The second, it's to represent the power spectrum of the sounds as images and apply some transformations on them in order to reveal, expose, and emphasize the health patterns that are hidden inside them. Finally, the contrast-enhanced PSD image obtained is diagnosed by using CNN. The results of the experiments demonstrate the high discrimination potential afforded by the proposed sound PSD image + CNN and show high diagnostic results according to the tool status.

A Study of Tram-Pedestrian Collision Prediction Method Using YOLOv5 and Motion Vector (YOLOv5와 모션벡터를 활용한 트램-보행자 충돌 예측 방법 연구)

  • Kim, Young-Min;An, Hyeon-Uk;Jeon, Hee-gyun;Kim, Jin-Pyeong;Jang, Gyu-Jin;Hwang, Hyeon-Chyeol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.12
    • /
    • pp.561-568
    • /
    • 2021
  • In recent years, autonomous driving technologies have become a high-value-added technology that attracts attention in the fields of science and industry. For smooth Self-driving, it is necessary to accurately detect an object and estimate its movement speed in real time. CNN-based deep learning algorithms and conventional dense optical flows have a large consumption time, making it difficult to detect objects and estimate its movement speed in real time. In this paper, using a single camera image, fast object detection was performed using the YOLOv5 algorithm, a deep learning algorithm, and fast estimation of the speed of the object was performed by using a local dense optical flow modified from the existing dense optical flow based on the detected object. Based on this algorithm, we present a system that can predict the collision time and probability, and through this system, we intend to contribute to prevent tram accidents.

Matrix Character Relocation Technique for Improving Data Privacy in Shard-Based Private Blockchain Environments (샤드 기반 프라이빗 블록체인 환경에서 데이터 프라이버시 개선을 위한 매트릭스 문자 재배치 기법)

  • Lee, Yeol Kook;Seo, Jung Won;Park, Soo Young
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.2
    • /
    • pp.51-58
    • /
    • 2022
  • Blockchain technology is a system in which data from users participating in blockchain networks is distributed and stored. Bitcoin and Ethereum are attracting global attention, and the utilization of blockchain is expected to be endless. However, the need for blockchain data privacy protection is emerging in various financial, medical, and real estate sectors that process personal information due to the transparency of disclosing all data in the blockchain to network participants. Although studies using smart contracts, homomorphic encryption, and cryptographic key methods have been mainly conducted to protect existing blockchain data privacy, this paper proposes data privacy using matrix character relocation techniques differentiated from existing papers. The approach proposed in this paper consists largely of two methods: how to relocate the original data to matrix characters, how to return the deployed data to the original. Through qualitative experiments, we evaluate the safety of the approach proposed in this paper, and demonstrate that matrix character relocation will be sufficiently applicable in private blockchain environments by measuring the time it takes to revert applied data to original data.

Integrating Resilient Tier N+1 Networks with Distributed Non-Recursive Cloud Model for Cyber-Physical Applications

  • Okafor, Kennedy Chinedu;Longe, Omowunmi Mary
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.7
    • /
    • pp.2257-2285
    • /
    • 2022
  • Cyber-physical systems (CPS) have been growing exponentially due to improved cloud-datacenter infrastructure-as-a-service (CDIaaS). Incremental expandability (scalability), Quality of Service (QoS) performance, and reliability are currently the automation focus on healthy Tier 4 CDIaaS. However, stable QoS is yet to be fully addressed in Cyber-physical data centers (CP-DCS). Also, balanced agility and flexibility for the application workloads need urgent attention. There is a need for a resilient and fault-tolerance scheme in terms of CPS routing service including Pod cluster reliability analytics that meets QoS requirements. Motivated by these concerns, our contributions are fourfold. First, a Distributed Non-Recursive Cloud Model (DNRCM) is proposed to support cyber-physical workloads for remote lab activities. Second, an efficient QoS stability model with Routh-Hurwitz criteria is established. Third, an evaluation of the CDIaaS DCN topology is validated for handling large-scale, traffic workloads. Network Function Virtualization (NFV) with Floodlight SDN controllers was adopted for the implementation of DNRCM with embedded rule-base in Open vSwitch engines. Fourth, QoS evaluation is carried out experimentally. Considering the non-recursive queuing delays with SDN isolation (logical), a lower queuing delay (19.65%) is observed. Without logical isolation, the average queuing delay is 80.34%. Without logical resource isolation, the fault tolerance yields 33.55%, while with logical isolation, it yields 66.44%. In terms of throughput, DNRCM, recursive BCube, and DCell offered 38.30%, 36.37%, and 25.53% respectively. Similarly, the DNRCM had an improved incremental scalability profile of 40.00%, while BCube and Recursive DCell had 33.33%, and 26.67% respectively. In terms of service availability, the DNRCM offered 52.10% compared with recursive BCube and DCell which yielded 34.72% and 13.18% respectively. The average delays obtained for DNRCM, recursive BCube, and DCell are 32.81%, 33.44%, and 33.75% respectively. Finally, workload utilization for DNRCM, recursive BCube, and DCell yielded 50.28%, 27.93%, and 21.79% respectively.

A topic modeling analysis for Korean online newspapers: Focusing on the social perceptions of nurses during the COVID-19 epidemic period (토픽모델링을 이용한 한국 인터넷 뉴스의 간호사 관련 기사 분석: COVID-19 유행시기를 중점으로)

  • Chang, Soo Jung;Park, Sunah;Son, Yedong
    • The Journal of Korean Academic Society of Nursing Education
    • /
    • v.28 no.4
    • /
    • pp.444-455
    • /
    • 2022
  • Purpose: This study explored the meaning of the social perceptions of nurses in online news articles during the coronavirus disease 2019 (COVID-19) pandemic. Methods: A total of 339 nurse-related articles published in Korean online newspapers from January 1 to December 31, 2020, were extracted by entering various combinations of OR and AND with the four words "Corona," "COVID," "Nursing," and "Nurse" as search keywords using BIGKinds, a news database provided by the Korea Press Foundation. The collected data were analyzed with a keyword network analysis and topic modeling using NetMiner 4. Results: The top keywords extracted from the nurse-related news articles were, in the following order, "metropolitan area," "protective clothing," "government," "task," and "admission." Four topics representing keywords were identified: "encouragement for dedicated nurses," "poor work environment," "front-line nurses working with obligation during the COVID-19 pandemic," and "nurses' efforts to prevent the spread of COVID-19." Conclusion: The media's attention to the dedication of nurses, the shortage of nursing resources, and the need for government support is encouraging in that it forms the public opinion necessary to lead to substantial improvements in treating nurses. The nursing community should actively promote policy proposals to improve treatment toward nurses by utilizing the net function of the media and proactively seek and apply strategies to improve the image of nurses working in various fields.

The Design and experiment of 5G-based metaverse motion synchronization system (5G 기반의 메타버스 모션 동기화 시스템의 설계 및 실험)

  • Lee Sangyoon;Lee Daesik;You, Youngmo;You, Hyeonsoo;Lee, Sangku
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.3
    • /
    • pp.61-75
    • /
    • 2023
  • In this paper, we design and experiment a 5G-based metaverse motion synchronization system with configuration of a mobile motion capture studio that has not been commercialized at home and abroad. As a result of the experiment, the average value of the latency test measurement using Wi-Fi is 0.134 seconds faster than the average latency test measurement value using the 5G network. Existing motion capture studios have spatial limitations as the motion capture range is limited to the Wi-Fi communication range. However, the 5G-based metaverse motion synchronization system configures a mobile motion capture studio so that motion performers can solve the spatial limitations by expanding the motion capture communication range indefinitely regardless of time and place. Therefore, it is possible to implement realistic metaverse contents by displaying a realistic and natural digital human because it is free from spatial constraints. The system which was tested in this paper can create a new business model by converging next-generation technologies that are receiving attention related to the digital virtual world, such as motion capture + 5G + digital human twin + metaverse. And it allows for research and develop a next-generation metaverse-based broadcasting solution at a recent time when the business value of digital human and metaverse technologies and functions has been proven and related sales are growing in earnest.