스마트 홈 시스템은 주거 생활의 편리함을 위해 새롭게 신축되는 건물에 대부분 설치되고 있다. 그러나, 스마트 홈 시스템이 보편화되고, 확산 속도가 빨라짐에 따라 해커들의 홈 네트워크 시스템 공격이 증가할 것으로 예상된다. 본 논문에서는, 스마트 홈의 위험수준별 침입 대응을 하기 위해 유선 네트워크와 무선 네트워크에서 발생한 침입 사례와 공격이 발생할 수 있는 가상 상황을 시나리오로 만들어 데이터베이스로 구축하였다. 이것을 기반으로 보안에 취약한 스마트 홈 사용자들에게 실시간으로 불법 침입 트래픽을 찾아내 침입 사실을 알려주고 공격을 차단하는 침입대응 알고리즘을 설계하였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제9권10호
/
pp.4204-4222
/
2015
Cloud is the latest buzz word in the internet community among developers, consumers and security researchers. There have been many attacks on the cloud in the recent past where the services got interrupted and consumer privacy has been compromised. Denial of Service (DoS) attacks effect the service availability to the genuine user. Customers are paying to use the cloud, so enhancing the availability of services is a paramount task for the service provider. In the presence of DoS attacks, the availability is reduced drastically. Such attacks must be detected and prevented as early as possible and the power of computational approaches can be used to do so. In the literature, machine learning techniques have been used to detect the presence of attacks. In this paper, a novel approach is proposed, where intelligent rule based feature selection and classification are performed for DoS attack detection in the cloud. The performance of the proposed system has been evaluated on an experimental cloud set up with real time DoS tools. It was observed that the proposed system achieved an accuracy of 98.46% on the experimental data for 10,000 instances with 10 fold cross-validation. By using this methodology, the service providers will be able to provide a more secure cloud environment to the customers.
최근 침해사고에서 오피스 문서를 통한 공격 비중이 높아지고 있다. 오피스 문서 어플리케이션의 보안이 점차 강화되어왔음에도 불구하고 공격기술의 고도화, 사회공학 기법의 복합적 사용으로 현재도 오피스 문서를 통한 공격이 유효하다. 본 논문에서는 악성 OOXML(Office Open XML) 문서 탐지 방법과 탐지를 위한 프레임워크를 제안한다. 이를 위해 공격에 사용된 악성파일과 정상파일을 악성코드 저장소와 검색엔진에서 수집하였다. 수집한 파일들의 악성코드 유형을 분석하여 문서 내 악성 여부를 판단하는데 유의미한 의심 개체요소 6가지를 구분하였으며, 악성코드 유형별 개체요소 탐지 방법을 제안한다. 또한, 탐지 방법을 바탕으로 OOXML 문서 기반 악성코드 탐지 프레임워크를 구현하여 수집된 파일을 분류한 결과 악성 파일셋 중 98.45%에 대해 탐지함을 확인하였다.
운전자의 안전성 및 편의성을 향상시키기 위하여, 최근 자동차에는 다수의 전자제어장치가 탑재되고 있다. 전자제어장치들은 차량의 상태를 서로 공유하기 위하여 일반적으로 CAN 통신 프로토콜을 이용하여 통신한다. 현대의 자동차는 안전성 및 편의성과 관련된 최첨단 서비스를 제공하고 있지만, 사이버보안 위협에 대한 Attack Surface가 증가하는 문제점이 있다. 자동차 해킹의 경우에는 운전자 생명과 직접적 영향이 있기 때문에, 이에 대응하기 위한 자동차 보안 기술 개발은 매우 중요하다. 차량용 침입탐지 기술은 자동차 해킹에 대응하기 위해 연구되고 있는 가장 대표적인 자동차 보안 기술 중 하나지만, 현재 제품화 가능한 수준의 차량용 침입 탐지 기술은 모두 주기 메시지에 대한 침입 탐지 여부만 분석이 가능하고 주기 메시지와 이벤트 메시지가 혼합된 형태인 PE (Periodic-and-on-Event) 메시지에 대해서는 분석이 어렵다. 본 논문에서는 PE 메시지를 이용하여 자동차 내부 네트워크에 침입하는 공격자 유형을 분류하고 이를 탐지할 수 있는 기법을 제안한다. 그리고 실제 차량에서 제안하는 기법을 우리의 공격자 모델에서 평가한 결과 0%의 FPR과 FNR을 보여준다.
International Journal of Internet, Broadcasting and Communication
/
제13권2호
/
pp.187-194
/
2021
This paper presents a margin-based face liveness detection method with behavioral confirmation to prevent spoofing attacks using deep learning techniques. The proposed method provides a possibility to prevent biometric person authentication systems from replay and printed spoofing attacks. For this work, a set of real face images and fake face images was collected and a face liveness detection model is trained on the constructed dataset. Traditional face liveness detection methods exploit the face image covering only the face regions of the human head image. However, outside of this region of interest (ROI) might include useful features such as phone edges and fingers. The proposed face liveness detection method was experimentally tested on the author's own dataset. Collected databases are trained and experimental results show that the trained model distinguishes real face images and fake images correctly.
최근 제어시스템을 대상으로 한 사이버공격이 점차 고도화 지능화됨에 따라 기존 시그니처(signature) 기반 탐지 기법은 한계에 봉착하였고, 이에 제어시스템 환경에 적합한 화이트리스트(whitelist) 기반 보안 기법이 새롭게 주목받고 있다. 그러나 최근 개발되고 있는 화이트리스트 기법들은 어플리케이션 레벨에서 한정적으로 사용되고 있으며, 무엇보다 블랙리스트(blacklist) 기반 보안 기법과 달리 이상 징후 유형에 대한 구체적 정보 제공이 불가능하다는 단점이 존재한다. 본 논문에서는 제어시스템에서 발생할 수 있는 이상 징후 유형들을 분류하고, 네트워크 레벨에서의 화이트리스트를 통해 이상 징후를 탐지할 수 있는 모델을 제시한다.
웹을 이용하는 사용자가 증가함에 따라 피싱 공격이 점차 증가하고 있다. 다양한 피싱 공격에 효과적으로 대응하기 위해서는 피싱 공격에 대한 올바른 이해가 필요하며 적절한 대응 방법을 활용할 수 있어야 한다. 이를 위해 본 논문에서는 피싱 공격의 절차를 접근 유도 단계와 공격 실행 단계로 정의하고 각 단계에서 발생하는 피싱 공격의 유형을 분석한다. 이와 같은 분석을 통해 피싱 공격에 대한 인식을 재고하고 피싱 공격의 피해를 사전에 예방할 수 있다. 또한, 분석된 내용을 기반으로 각 피싱 유형에 대한 대응 방안을 제시한다. 제안하는 대응 방안은 각 단계별로 적합한 웹사이트 특징을 활용한 방식이다. 대응 방안의 유효성을 판단하기 위하여 제안한 특징 추출 방안을 통해 휴리스틱 기반 악성 사이트 분류 모델을 생성하고 각 모델의 정확도를 검증한다. 결론적으로 본 논문에서 제안하는 방안은 안티 피싱 기술을 강화하는 기초가 되고 웹사이트 보안 강화의 기반이 된다.
2009년 이후 정부 및 민간부문에서는 DDoS 방어체계 구축을 위해 수백억 원의 예산을 투입해 왔으며, 그 결과 많은 정부 및 민간분야에 DDoS 대응을 위한 전용장비가 설치되었다. 그러나 이러한 기관 역시 DDoS 공격 발생 시 성공적인 방어가 이루어지지 않는 경우가 많은데, 이는 DDoS 대응 장비가 특정 공격 행위에만 대응할 수 있는 시그니처 중심의 방어 구조를 따르고 있기 때문이다. 이에 비해 방어자원 관점의 정책적 대응방법을 통할 경우, 공격 기법과 상관없이 서비스 자원의 가용성 확인을 통하여 시스템 이상여부 및 공격 유형의 종류를 확인할 수 있으며, 공격에 대한 대응 정책 또한 손쉽게 도출할 수 있다. 본 고에서는 기존의 공격 행위 중심의 방어체계에서 벗어나 방어자 관점의 DDoS 탐지 기법을 소개하고, 이를 통해 정책기반 서비스거부공격 대응방안을 제시한다.
최근 사이버보안 패러다임의 변화에 따라, 인공지능 구현 기술인 기계학습과 딥러닝 기법을 적용한 이상탐지 방법의 연구가 증가하고 있다. 본 연구에서는 공개 데이터셋인 NGIDS-DS(Next Generation IDS Dataset)를 이용하여 GRU(Gated Recurrent Unit) 신경망 기반 침입 탐지 모델의 이상(anomaly) 탐지 성능을 향상시킬 수 있는 데이터 전처리 기술에 관한 비교 연구를 수행하였다. 또한 정상 데이터와 공격 데이터 비율에 따른 클래스 불균형 문제를 해결하기 위해 DCGAN(Deep Convolutional Generative Adversarial Networks)을 적용한 오버샘플링 기법 등을 사용하여 오버샘플링 비율에 따른 탐지 성능을 비교 및 분석하였다. 실험 결과, 시스템 콜(system call) 특성과 프로세스 실행패스 특성에 Doc2Vec 알고리즘을 사용하여 전처리한 방법이 좋은 성능을 보였고, 오버샘플링별 성능의 경우 DCGAN을 사용하였을 때, 향상된 탐지 성능을 보였다.
DDoS 공격과 APT 공격은 좀비 컴퓨터들로 정해진 시간에 동시에 공격을 가하여 사회적 혼란을 유발하였다. 이러한 공격에는 공격자의 명령을 수행하는 많은 좀비 컴퓨터들이 필요하며 좀비 컴퓨터에는 안티바이러스 제품의 탐지를 우회하는 알려지지 않은 악성코드가 실행되어야한다. 그동안 시그니처로 탐지하던 안티바이러스 제품을 벗어나 알려지지 않은 악성코드 탐지에 많은 방법들이 제안되어 왔다. 본 논문은 디지털 포렌식 기법을 활용하여 알려지지 않은 악성코드 탐지 방법을 제시하고 정상 파일과 악성코드의 다양한 샘플들을 대상으로 수행한 실험 결과에 대하여 기술한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.