• Title/Summary/Keyword: Attack Model

Search Result 1,005, Processing Time 0.031 seconds

Mathematical model and heuristic for the assignment of military engineering equipments in ROK army (공병 장비의 최적할당을 위한 수리모형 및 휴리스틱 알고리즘)

  • Park, Jongbok;Ahn, Namsu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.138-144
    • /
    • 2020
  • The Army's engineers are carrying out a range of operations using various equipment, of which, artillery unit support is the representative engineering operation field. The main task of the artillery unit is to attack the enemy's center with firepower from the rear of a friendly force. The artillery must move its original position after firing several times to prevent exposure of the shooting position. This paper proposed a mathematical model and heuristic algorithm that can be used to determine the optimal allocation among engineer equipment, the team (work), and position while reflecting the constraints of the construction of an artillery position. The model proposed in this paper derived the optimal solution for the small size problems, but it takes a long time to derive the optimal solution for the problem of equipment placement of the engineer battalion and brigade scale. Although the heuristic suggested in this study does not guarantee the optimal solution, the solution could be obtained in a reasonable amount of time.

Numerical Study on the Side-Wind Aerodynamic Forces of Chambered 3-D Thin-Plate Rigid-Body Model (캠버가 있는 3차원 박판 강체 모형의 측풍 공기력에 대한 수치 연구)

  • Shin, Jong-Hyeon;Chang, Se-Myong;Moon, Byung-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.2
    • /
    • pp.97-108
    • /
    • 2015
  • In the design of sailing yachts, para-glider, or high-sky wind power, etc., the analysis of side-wind aerodynamic forces exerted on a cambered 3-D model is very important to predict the performance of various machinery systems. To understand the essential flow physics around the three-dimensional shape, simplified rigid-body models are proposed in this study. Four parameters such as free stream velocity, angle of attack, aspect ratio, and camber are considered as the independent variables. Lift and drag coefficients are computed with CFD technique using ANSYS-CFX, and the results with the visualization of post-processed flow fields are analyzed in the viewpoint of fluid dynamics.

A Probabilistic Model of Damage Propagation based on the Markov Process (마코프 프로세스에 기반한 확률적 피해 파급 모델)

  • Kim Young-Gab;Baek Young-Kyo;In Hoh-Peter;Baik Doo-Kwon
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.8
    • /
    • pp.524-535
    • /
    • 2006
  • With rapid development of Internet technology, business management in an organization or an enterprise depends on Internet-based technology for the most part. Furthermore, as dependency and cohesiveness of network in the communication facilities are increasing, cyber attacks have been increased against vulnerable resource in the information system. Hence, to protect private information and computer resource, research for damage propagation is required in this situation. However the proposed traditional models present just mechanism for risk management, or are able to be applied to the specified threats such as virus or worm. Therefore, we propose the probabilistic model of damage propagation based on the Markov process, which can be applied to diverse threats in the information systems. Using the proposed model in this paper, we can predict the occurrence probability and occurrence frequency for each threats in the entire system.

Method Decoder for Low-Cost RFID Tags

  • Juels, Ari
    • 한국정보컨버전스학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.47-52
    • /
    • 2008
  • A radio-frequency identification(RFID) tag is a small, inexpensive microchip that emits an identifier in response to a query from a nearby reader. The price of these tags promises to drop to the range of $0.05 per unit in the next several years, offering a viable and powerful replacement for barcodes. The challenge in providing security for low-cost RFID tags is that they are computationally weak devices, unable to perform even basic symmetric-key cryptographic operations. Security researchers often therefore assume that good privacy protection in RFID tags is unattainable. In this paper, we explore a notion of minimalist cryptography suitable for RFID tags. We consider the type of security obtainable in RFID devices with a small amount of rewritable memory, but very limited computing capability. Our aim is to show that standard cryptography is not necessary as a starting point for improving security of very weak RFID devices. Our contribution is threefold: 1. We propose a new formal security model for authentication and privacy in RFID tags. This model takes into account the natural computational limitations and the likely attack scenarios for RFID tags in real-world settings. It represents a useful divergence from standard cryptographic security modeling, and thus a new view of practical formalization of minimal security requirements for low-cost RFID-tag security. 2. We describe protocol that provably achieves the properties of authentication and privacy in RFID tags in our proposed model, and in a good practical sense. Our proposed protocol involves no computationally intensive cryptographic operations, and relatively little storage. 3. Of particular practical interest, we describe some reduced-functionality variants of our protocol. We show, for instance, how static pseudonyms may considerably enhance security against eavesdropping in low-cost RFID tags. Our most basic static-pseudonym proposals require virtually no increase in existing RFID tag resources.

  • PDF

Distributed Intrusion Detection System for Safe E-Business Model (안전한 E-Business 모델을 위한 분산 침입 탐지 시스템)

  • 이기준;정채영
    • Journal of Internet Computing and Services
    • /
    • v.2 no.4
    • /
    • pp.41-53
    • /
    • 2001
  • Multi-distributed web cluster model built for high availability E-Business model exposes internal system nodes on its structural characteristics and has a potential that normal job performance is impossible due to the intentional prevention and attack by an illegal third party. Therefore, the security system which protects the structured system nodes and can correspond to the outflow of information from illegal users and unfair service requirements effectively is needed. Therefore the suggested distributed invasion detection system is the technology which detects the illegal requirement or resource access of system node distributed on open network through organic control between SC-Agents based on the shared memory of SC-Server. Distributed invasion detection system performs the examination of job requirement packet using Detection Agent primarily for detecting illegal invasion, observes the job process through monitoring agent when job is progressed and then judges the invasion through close cooperative works with other system nodes when there is access or demand of resource not permitted.

  • PDF

Internal Network Partition Security Model Based Authentication using BlockChain Management Server in Cloud Environment (클라우드 환경에서 블록체인관리서버를 이용한 인증기반 내부망 분리 보안 모델)

  • Kim, Young Soo;Lee, Byoung Yup
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.6
    • /
    • pp.434-442
    • /
    • 2018
  • Recently, the threat to the security and damage of important data leaked by devices of intranet infected by malicious code through the Internet have been increasing. Therefore, the partitioned intranet model that blocks access to the server for business use by implementing authentication of devices connected to the intranet is required. For this, logical net partition with the VDI(Virtual Desktop Infrastructure) method is no information exchange between physical devices connected to the intranet and the virtual device so that it could prevent data leakage and improve security but it is vulnerable to the attack to expose internal data, which has access to the server for business connecting a nonregistered device into the intranet. In order to protect the server for business, we suggest a blockchain based network partition model applying blockchain technology to VDI. It contributes to decrease in threat to expose internal data by improving not only capability to verify forgery of devices, which is the vulnerability of the VDI based logical net partition, but also the integrity of the devices.

Electronic Signature Model and Application of Security Server System using Identity Information (식별정보를 이용한 보안서버시스템의 전자서명 모델 및 응용)

  • Kim Young-Soo;Shin Seung-Jung
    • The KIPS Transactions:PartC
    • /
    • v.12C no.2 s.98
    • /
    • pp.169-174
    • /
    • 2005
  • Electronic signature system is required to be used in the promotion of the e-Commerce. Because the application system for electronic signature system has inconvenience and vulnerability of security, users are reluctant to use it. Therefore, the electronic signature system should give a guarantee of convenience and security. In this paper, we propose server-based application model, which uses identity information and makes users access transparently to solve electronic signature problems. We also design and verify electronic signature system that reduces threats to security, which cause server attack by distributing the part of signature key to both server and client. The application model with lightweight server system based on the electronic signature system is expected to be used in the promotion of the e-Commerce and help to make its business more efficient and competitive.

Mutual Authentication Protocol for Safe Data Transmission of Multi-distributed Web Cluster Model (다중 분산 웹 클러스터모델의 안전한 데이터 전송을 위한 상호 인증 프로토콜)

  • Lee, Kee-Jun;Kim, Chang-Won;Jeong, Chae-Yeong
    • The KIPS Transactions:PartC
    • /
    • v.8C no.6
    • /
    • pp.731-740
    • /
    • 2001
  • Multi-distributed web cluster model expanding conventional cluster system is the cluster system which processes large-scaled work demanded from users with parallel computing method by building a number of system nodes on open network into a single imaginary network. Multi-distributed web cluster model on the structured characteristics exposes internal system nodes by an illegal third party and has a potential that normal job performance is impossible by the intentional prevention and attack in cooperative work among system nodes. This paper presents the mutual authentication protocol of system nodes through key division method for the authentication of system nodes concerned in the registration, requirement and cooperation of service code block of system nodes and collecting the results and then designs SNKDC which controls and divides symmetrical keys of the whole system nodes safely and effectively. SNKDC divides symmetrical keys required for performing the work of system nodes and the system nodes transmit encoded packet based on the key provided. Encryption packet given and taken between system nodes is decoded by a third party or can prevent the outflow of information through false message.

  • PDF

A Model for Privacy Preserving Publication of Social Network Data (소셜 네트워크 데이터의 프라이버시 보호 배포를 위한 모델)

  • Sung, Min-Kyung;Chung, Yon-Dohn
    • Journal of KIISE:Databases
    • /
    • v.37 no.4
    • /
    • pp.209-219
    • /
    • 2010
  • Online social network services that are rapidly growing recently store tremendous data and analyze them for many research areas. To enhance the effectiveness of information, companies or public institutions publish their data and utilize the published data for many purposes. However, a social network containing information of individuals may cause a privacy disclosure problem. Eliminating identifiers such as names is not effective for the privacy protection, since private information can be inferred through the structural information of a social network. In this paper, we consider a new complex attack type that uses both the content and structure information, and propose a model, $\ell$-degree diversity, for the privacy preserving publication of the social network data against such attacks. $\ell$-degree diversity is the first model for applying $\ell$-diversity to social network data publication and through the experiments it shows high data preservation rate.

Mean flow characteristics of two-dimensional wings in ground effect

  • Jung, Jae-Hwan;Yoon, Hyun-Sik;Chun, Ho-Hwan;Hung, Pham Anh;Elsamni, Osama Ahmed
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.2
    • /
    • pp.151-161
    • /
    • 2012
  • The present study numerically investigates the aerodynamic characteristics of two-dimensional wings in the vicinity of the ground by solving two-dimensional steady incompressible Navier-Stokes equations with the turbulence closure model of the realizable k-${\varepsilon}$ model. Numerical simulations are performed at a wide range of the normalized ground clearance by the chord length ($0.1{\leq}h/C{\leq}1.25$) for the angles of attack ($0^{\circ}{\leq}{\alpha}{\leq}10^{\circ}$) in the prestall regime at a Reynolds number (Re) of $2{\times}10^6$ based on free stream velocity $U_{\infty}$ and the chord length. As the physical model of this study, a cambered airfoil of NACA 4406 has been selected by a performance test for various airfoils. The maximum lift-to-drag ratio is achieved at ${\alpha}=4^{\circ}$ and h / C = 0.1. Under the conditions of ${\alpha}=4^{\circ}$ and h / C = 0.1, the effect of the Reynolds number on the aerodynamic characteristics of NACA 4406 is investigated in the range of $2{\times}10^5{\leq}Re{\leq}2{\times}10^9$. As Re increases, $C_l$ and $C_d$ augments and decreases, respectively, and the lift-to-drag ratio increases linearly.