• Title/Summary/Keyword: Attack Model

Search Result 1,005, Processing Time 0.031 seconds

Blockage effects on aerodynamics and flutter performance of a streamlined box girder

  • Li, Yongle;Guo, Junjie;Chen, Xingyu;Tang, Haojun;Zhang, Jingyu
    • Wind and Structures
    • /
    • v.30 no.1
    • /
    • pp.55-67
    • /
    • 2020
  • Wind tunnel test is one of the most important means to study the flutter performance of bridges, but there are blockage effects in flutter test due to the size limitation of the wind tunnel. On the other hand, the size of computational domain can be defined by users in the numerical simulation. This paper presents a study on blockage effects of a simplified box girder by computation fluid dynamics (CFD) simulation, the blockage effects on the aerodynamic characteristics and flutter performance of a long-span suspension bridge are studied. The results show that the aerodynamic coefficients and the absolute value of mean pressure coefficient increase with the increase of the blockage ratio. And the aerodynamic coefficients can be corrected by the mean wind speed in the plane of leading edge of model. At each angle of attack, the critical flutter wind speed decreases as the blockage ratio increases, but the difference is that bending-torsion coupled flutter and torsional flutter occur at lower and larger angles of attack respectively. Finally, the correction formula of critical wind speed at 0° angle of attack is given, which can provide reference for wind resistance design of streamlined box girders in practical engineering.

SOCMTD: Selecting Optimal Countermeasure for Moving Target Defense Using Dynamic Game

  • Hu, Hao;Liu, Jing;Tan, Jinglei;Liu, Jiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.10
    • /
    • pp.4157-4175
    • /
    • 2020
  • Moving target defense, as a 'game-changing' security technique for network warfare, realizes proactive defense by increasing network dynamics, uncertainty and redundancy. How to select the best countermeasure from the candidate countermeasures to maximize defense payoff becomes one of the core issues. In order to improve the dynamic analysis for existing decision-making, a novel approach of selecting the optimal countermeasure using game theory is proposed. Based on the signal game theory, a multi-stage adversary model for dynamic defense is established. Afterwards, the payoffs of candidate attack-defense strategies are quantified from the viewpoint of attack surface transfer. Then the perfect Bayesian equilibrium is calculated. The inference of attacker type is presented through signal reception and recognition. Finally the countermeasure for selecting optimal defense strategy is designed on the tradeoff between defense cost and benefit for dynamic network. A case study of attack-defense confrontation in small-scale LAN shows that the proposed approach is correct and efficient.

An analysis and design on the security node for guaranteeing availability against network based DoS (네트워크 기반 서비스 거부 공격에 대응한 가용성 유지를 위한 보안 노드 분석 및 설계)

  • 백남균;김지훈;신화종;이완석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.4C
    • /
    • pp.550-558
    • /
    • 2004
  • In order to design network node for guaranteeing availability against network based DoS attack, some restrictions such as the relationship analysis on upper and lower layer bandwidth, buffer capacity, attack resources, a number of attack session and loss probability are analyzed. And then, to make good use of network resource, the relationship between required resources for satisfying loss probability and cost is discussed. The results of this study are expected to be applied to the effective security node design against network DoS.

Be study technical information protection in ubiqutious home networks (유비쿼터스 홈 네트워크에서의 정보보호 기술 연구)

  • Cheon, Jae-Hong;Park, Dea-Woo
    • KSCI Review
    • /
    • v.15 no.1
    • /
    • pp.65-75
    • /
    • 2007
  • Analyzed about a matter and requirements to intimidate security of ubiquitous and home network threatening various security for personal information protection in ubiquitous home networks at these papers, and studied. Got authentication procedures and verification procedures acid user approach to be reasonable through designs to the home security gateway which strengthened a security function in the outsides, and strengthened protection of a home network. Also, execute a DoS, DDoS, IP Spoofing attack protective at home network security gateways proved, and security regarding an external denial of service attack was performed, and confirmed. Strengthen appliances and security regarding a user, and confirm a defense regarding an external attack like DoS, DDoS, IP Spoofing, and present a home network security model of this paper to the plans that can strengthen personal information protection in ubiquitous home networks in ubiquitous home networks through experiment.

  • PDF

A Multiple Instance Learning Problem Approach Model to Anomaly Network Intrusion Detection

  • Weon, Ill-Young;Song, Doo-Heon;Ko, Sung-Bum;Lee, Chang-Hoon
    • Journal of Information Processing Systems
    • /
    • v.1 no.1 s.1
    • /
    • pp.14-21
    • /
    • 2005
  • Even though mainly statistical methods have been used in anomaly network intrusion detection, to detect various attack types, machine learning based anomaly detection was introduced. Machine learning based anomaly detection started from research applying traditional learning algorithms of artificial intelligence to intrusion detection. However, detection rates of these methods are not satisfactory. Especially, high false positive and repeated alarms about the same attack are problems. The main reason for this is that one packet is used as a basic learning unit. Most attacks consist of more than one packet. In addition, an attack does not lead to a consecutive packet stream. Therefore, with grouping of related packets, a new approach of group-based learning and detection is needed. This type of approach is similar to that of multiple-instance problems in the artificial intelligence community, which cannot clearly classify one instance, but classification of a group is possible. We suggest group generation algorithm grouping related packets, and a learning algorithm based on a unit of such group. To verify the usefulness of the suggested algorithm, 1998 DARPA data was used and the results show that our approach is quite useful.

Sequential fusion to defend against sensing data falsification attack for cognitive Internet of Things

  • Wu, Jun;Wang, Cong;Yu, Yue;Song, Tiecheng;Hu, Jing
    • ETRI Journal
    • /
    • v.42 no.6
    • /
    • pp.976-986
    • /
    • 2020
  • Internet of Things (IoT) is considered the future network to support wireless communications. To realize an IoT network, sufficient spectrum should be allocated for the rapidly increasing IoT devices. Through cognitive radio, unlicensed IoT devices exploit cooperative spectrum sensing (CSS) to opportunistically access a licensed spectrum without causing harmful interference to licensed primary users (PUs), thereby effectively improving the spectrum utilization. However, an open access cognitive IoT allows abnormal IoT devices to undermine the CSS process. Herein, we first establish a hard-combining attack model according to the malicious behavior of falsifying sensing data. Subsequently, we propose a weighted sequential hypothesis test (WSHT) to increase the PU detection accuracy and decrease the sampling number, which comprises the data transmission status-trust evaluation mechanism, sensing data availability, and sequential hypothesis test. Finally, simulation results show that when various attacks are encountered, the requirements of the WSHT are less than those of the conventional WSHT for a better detection performance.

Classification of Architectural Design Elements for the Risk Assessment of Bomb Attack of Multi-Use Buildings (다중이용시설의 폭발물 테러위험도 평가를 위한 건축계획요소 체계화 연구)

  • Kang, Kyung-Yeon;Park, So-Yeon;Heo, Hong;Lee, Kyung-Hoon
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.7
    • /
    • pp.47-57
    • /
    • 2018
  • As a preliminary step for developing vulnerability assessment model of terrorism, this study aims to deduce and classify architectural design elements of multi-use buildings to protect them from terrorism using explosives. For these objectives, eleven domestic and foreign guidelines of anti-terrorism, including RVS which is one of the commonly used tools for assessing vulnerability to terrorism, were analyzed. As results, 2 scenarios of explosive attack, 4 layers of defense, and 58 architectural design elements for risk assessment of terrorism were deduced. And the design elements were categorized into 18 groups based on their purpose and function to take into account the supplementary effects among them. Then, the design measures applicable for each element were classified into several grades on the basis of its protection or risk level. Lastly, 11 multi-use buildings were selected and investigated how the elements suggested in this study were applied to them.

Simulation of porous claddings using LES and URANS: A 5:1 rectangular cylinder

  • Xu, Mao;Patruno, Luca;Lo, Yuan-Lung;de Miranda, Stefano;Ubertini, Francesco
    • Wind and Structures
    • /
    • v.35 no.1
    • /
    • pp.67-81
    • /
    • 2022
  • While the aerodynamics of solid bluff bodies is reasonably well-understood and methodologies for their reliable numerical simulation are available, the aerodynamics of porous bluff bodies formed by assembling perforated plates has received less attention. The topic is nevertheless of great technical interest, due to their ubiquitous presence in applications (fences, windbreaks and double skin facades to name a few). This work follows previous investigations by the authors, aimed at verifying the consistency of numerical simulations based on the explicit modelling of the perforated plates geometry and their representation by means of pressure-jumps. In this work we further expand such investigations and, contextually, we provide insight into the flow arrangement and its sensitivity to important modelling and setup configurations. To this purpose, Unsteady Reynolds-Averaged Navier-Stokes (URANS) and Large-Eddy Simulations (LES) are performed for a 5:1 rectangular cylinder at null angle of attack. Then, using URANS, porosity and attack angle are simultaneously varied. To the authors' knowledge this is the first time in which LES are used to model a porous bluff body and compare results obtained using the explicit modelling approach to those obtained relying on pressure-jumps. Despite the flow organization often shows noticeable differences, good agreement is found between the two modelling strategies in terms of drag force.

Invulnerability analysis of nuclear accidents emergency response organization network based on complex network

  • Wen Chen;Shuliang Zou;Changjun Qiu;Jianyong Dai;Meirong Zhang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.8
    • /
    • pp.2923-2936
    • /
    • 2024
  • Modern risk management philosophy emphasizes the invulnerability of human beings to cope with all kinds of emergencies. The Nuclear Accidents Emergency Response Organization (NAERO) of Nuclear Power Plant (NPP) is the primary body responsible for nuclear accidents emergency response. The invulnerability of the organization to disturbance or attack from internal and external sources is crucial in the completion of its response missions, reduction of severity of accidents, and assurance of public and environmental safety. This paper focused on the NAERO of a certain NPP in China, and applied the complex network theory to construct the network model of the organization. The topological characteristics of the network were analyzed. Four importance evaluation indexes of network nodes including Degree Centrality (DC), Betweeness Centrality (BC), Closeness Centrality (CC) and Eigenvector Centrality (EC), along with Pearson coefficient correlation among the indexes were calculated and analyzed. Size of the Largest Connected Component (LCC) and Network Efficiency were used as measures regarding the invulnerability of the network. Simulation experiments were conducted to assess the invulnerability of network against various attack strategies. These experiments were conducted both in the absence of node protection measures and under protection measures with different node protection rates. This study evaluated the invulnerability of the NAERO network, and provided significant decision-making basis for the enhancement of the network's invulnerability.

A Study on Analysis Technique for Chloride Penetration in Cracked Concrete under Combined Deterioration (복합열화에 노출된 균열부 콘크리트 내의 염화물 침투 해석 기법에 대한 연구)

  • Kwon, Seung-Jun;Song, Ha-Won;Byun, Keun-Joo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.359-366
    • /
    • 2007
  • Recently, analysis researches on durability are focused on chloride attack and carbonation due to increased social and engineering significance. Generally, chloride penetration and carbonation occur simultaneously except for in submerged condition and chloride behavior in carbonated concrete is evaluated to be different from that in normal concrete. Furthermore, if unavoidable crack occurs in concrete, it influences not only single attack but also coupled deterioration more severely. This is a study on analysis technique with system dynamics for chloride penetration in concrete structures exposed to coupled chloride attack and carbonation through chloride diffusion, permeation, and carbonation reaction. For the purpose, a modeling for chloride behavior considering diffusion and permeation is performed through previous models for early-aged concrete such as MCHHM (multi component hydration heat model) and MPSFM (micro pore structure formation). Then model for combined deterioration is developed considering changed characteristics such as pore distribution, saturation and dissociation of bound chloride content under carbonation. The developed model is verified through comparison with previous experimental data. Additionally, simulation for combined deterioration in cracked concrete is carried out through utilizing previously developed models for chloride penetration and carbonation in cracked concrete. From the simulated results, CCTZ (chloride-carbonation transition zone) for evaluating combined deterioration is proposed. It is numerically verified that concrete with slag has better resistance to combined deterioration than concrete with OPC in sound and cracked concrete.