• Title/Summary/Keyword: Attack Flow

Search Result 615, Processing Time 0.023 seconds

A NUMERICAL STUDY ON THE CHARACTERISTICS OF ASYMMETRIC VORTICES AND SIDE FORCES ON SLENDER BODIES AT HIGH ANGLES OF ATTACK (세장형 물체 주위 고앙각 유동의 비대칭 와류 및 측력 특성에 관한 수치적 연구)

  • Jung S.K.;Jung J.H.;Myong R.S.;Cho T.H.
    • Journal of computational fluids engineering
    • /
    • v.11 no.3 s.34
    • /
    • pp.22-27
    • /
    • 2006
  • Flow around a guided missile in high maneuver, i.e. at a high angle of attack, shows complex phenomena. It is well known that even in geometrically symmetric conditions the flow around a missile at high angles of attack can generate unexpected large side forces and yaw moments due to asymmetric vortices. In this paper, a CFD code (FLUENT) based on the Navier-Stokes equations was used for the numerical analysis to find a suitable numerical mechanism for generation of asymmetric vortices. It is shown that a numerical technique of applying different surface roughness to a specific area of the missile nose surface gives the best fit in comparison with the experimental results. In addition, a numerical investigation of variations of side forces and pressure distributions with angle of attack and roll angle was conducted for the purpose of identifying the source of vortex asymmetries.

The Variation of Flow Field and Hydrodynamic Coefficients of Submarine by Changes of Angle of Attack and Yaw Angle (유동 방향 변화에 따른 잠수함 주위의 유동 특성과 유체동역학적 계수의 변화)

  • Jang Jin-Ho;Park Warn-Gyu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.4 s.148
    • /
    • pp.460-466
    • /
    • 2006
  • The three-dimensional RANS equations were applied to analyze the flow field of a submarine. To validate the code, the DARPA SUBOFF bare hull and an eliipsoid at angles of attack of $10^{\circ}\;and\;30^{\circ}$ were simulated and good agreement with experiments was obtained. After the code validation, the flows over the full configuration of DARPA SUBOFF model having a fairwater and four stern appendages were simulated at four angles of attack $(0^{\circ},\;10^{\circ},\;20^{\circ},\;30^{\circ})$ and three yaw angles $(10^{\circ},\;20^{\circ},\;30^{\circ})$ Specifically, the pressure contours and streamlines of fairwater and stern appendage were compared as the angle of attack and yaw angle changed. The variations of hydrodynamic forces were also calculated.

Flutter performance of box girders with different wind fairings at large angles of attack

  • Tang, Haojun;Zhang, Hang;Mo, Wei;Li, Yongle
    • Wind and Structures
    • /
    • v.32 no.5
    • /
    • pp.509-520
    • /
    • 2021
  • The streamlined box is a common type of girders for long-span suspension bridges. Spanning deep canyons, long-span bridges are frequently attacked by strong winds with large angles of attack. In this situation, the flow field around the streamlined box changes significantly, leading to reduction of the flutter performance. The wind fairings have different effects on the flutter performance. Therefore, this study examines the flutter performance of box girders with different wind fairings at large angles of attack. Computational fluid dynamics (CFD) simulations were carried out to extract the flutter derivatives, and the critical flutter state of a long-span bridge was determined. Further comparisons of the wind fairings were investigated by a rapid method which is related to the input energy by the aerodynamic force. The results show that a reasonable type of wind fairings could improve the flutter performance of long-span bridges at large angles of attack. For the torsional flutter instability, the wind fairings weaken the adverse effect of the vortex attaching to the girder, and a sharper one could achieve a better result. According to the input energies on the girder with different wind fairings, the symmetrical wind fairings are more beneficial to the flutter performance

Comparison of aerodynamic performances of various airfoils from different airfoil families using CFD

  • Kaya, Mehmet Numan;Kok, Ali Riza;Kurt, Huseyin
    • Wind and Structures
    • /
    • v.32 no.3
    • /
    • pp.239-248
    • /
    • 2021
  • In this study, three airfoil families, NACA, FX and S, in each case three from each series with different shapes were investigated at different angles of attack using Computational Fluid Dynamics (CFD) method. To verify the CFD model, simulation results of the NACA 0012 airfoil was compared against the available experimental data and k-ω SST was used as the turbulence model. Lift coefficients, lift to drag ratios and pressure distributions around airfoils were obtained from the CFD simulations and compared each other. The simulations were performed at three Reynolds numbers, Re=2×105, 1×106and 2×106, and angle of attack was varied between -6 and 12 degrees. According to the results, similar lift coefficient values were obtained for symmetric airfoils reaching their maximum values at similar angles of attack. Maximum lift coefficients were obtained for FX 60-157 and S 4110 airfoils having lift coefficient values around 1.5 at Re=1×106 and 12 degrees of angle of attack. Flow separation occurred close to the leading edge of some airfoils at higher angles of attack, while some other airfoils were more successful in keeping the flow attached on the surface.

Performance of a hydrofoil operating close to a free surface over a range of angles of attack

  • Ni, Zao;Dhanak, Manhar;Su, Tsung-chow
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • Performance of a NACA 634-021 hydrofoil in motion under and in close proximity of a free surface for a large range of angles of attack is studied. Lift and drag coefficients of the hydrofoil at different submergence depths are investigated both numerically and experimentally, for 0° ≤ AoA ≤ 30° at a Reynolds number of 105. The results of the numerical study are in good agreement with the experimental results. The agreement confirms the new finding that for a submerged hydrofoil operating at high angles of attack close to a free surface, the interaction between the hydrofoil-motion induced waves on the free surface and the hydrofoil results in mitigation of the flow separation characteristics on the suction side of the foil and delay in stall, and improvement in hydrofoil performance. In comparing with a baseline case, results suggest a 55% increase in maximum lift coefficient and 90% average improvement in performance for, based on the lift-to-drag ratio, but it is also observed significant decrease of lift-to-drag ratio at lower angles of attack. Flow details obtained from combined finite volume and volume of fluid numerical methods provide insight into the underlying enhancement mechanism, involving interaction between the hydrofoil and the free surface.

An Empirical Comparison Study on Attack Detection Mechanisms Using Data Mining (데이터 마이닝을 이용한 공격 탐지 메커니즘의 실험적 비교 연구)

  • Kim, Mi-Hui;Oh, Ha-Young;Chae, Ki-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.2C
    • /
    • pp.208-218
    • /
    • 2006
  • In this paper, we introduce the creation methods of attack detection model using data mining technologies that can classify the latest attack types, and can detect the modification of existing attacks as well as the novel attacks. Also, we evaluate comparatively these attack detection models in the view of detection accuracy and detection time. As the important factors for creating detection models, there are data, attribute, and detection algorithm. Thus, we used NetFlow data gathered at the real network, and KDD Cup 1999 data for the experiment in large quantities. And for attribute selection, we used a heuristic method and a theoretical method using decision tree algorithm. We evaluate comparatively detection models using a single supervised/unsupervised data mining approach and a combined supervised data mining approach. As a result, although a combined supervised data mining approach required more modeling time, it had better detection rate. All models using data mining techniques could detect the attacks within 1 second, thus these approaches could prove the real-time detection. Also, our experimental results for anomaly detection showed that our approaches provided the detection possibility for novel attack, and especially SOM model provided the additional information about existing attack that is similar to novel attack.

The Flow Analysis of Supercavitating Cascade by Nonlinear Theory (비선형이론에 의한 Supercavitation 익렬의 유동해석)

  • Pak, Ee-Tong;Hwang, Yoon
    • Solar Energy
    • /
    • v.17 no.1
    • /
    • pp.35-46
    • /
    • 1997
  • In this study comparison of experiment results with the computed results of linear theory and nonlinear theory using singularity method was obtainable. Specially singularity points like sources and vortexes on hydrofoil and freestreamline were distributed to analyze two dimensional flow field of supercavitating cascade using nonlinear theory, and governing equations of flow field were derived and hydraulic characteristics of cascade were calculated by numerical analysis of the governing equations. The results compared linear theory and nonlinear theory with the experiment results of the study are as follows: The tolerances of nonlinear theory were larger than those of linear theory in case of ${\alpha}<10^{\circ}$. Moreover the computational range of attack angles could be expanded from ${\alpha}=10^{\circ}$ to ${\alpha}=25^{\circ}$, the flow field of supercavitating cascade could be analyzed in the condition which the wake thickness and the length of cavity are a variable. The shapes of cavity were changed sensitively according to various variable such as attack angles, pitches and wake thickness, and the pressure distribution of hydrofoil surface was identical almost disregarding wake thickness but changed largely according to attack angle and the length of cavity. Lift coefficient and drag coefficient were reduced according to increasing of wake thickness but the influences of wake thickness were very little in the situation of small pitch and long cavity.

  • PDF

Sensitivity analysis of transonic flow past a NASA airfoil/wing with spoiler deployments

  • AKuzmin, lexander
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.3
    • /
    • pp.232-240
    • /
    • 2014
  • Transonic flow past a NASA SC(2)-0710 airfoil with deployments of a spoiler up to $6^{\circ}$ was studied numerically. We consider angles of attack from $-0.6^{\circ}$ to $0.6^{\circ}$ and free-stream Mach numbers from 0.81 to 0.86. Solutions of the unsteady Reynolds-averaged Navier-Stokes equations were obtained with a finite-volume solver using several turbulence models. Both stationary and time-dependent deployments of the spoiler were examined. The study revealed the existence of narrow bands of the Mach number, angle of attack, and spoiler deflection angle, in which the flow was extremely sensitive to small perturbations. Simulations of 3D flow past a swept wing confirmed the flow sensitivity to small perturbations of boundary conditions.

Tracking the Source of Cascading Cyber Attack Traffic Using Network Traffic Analysis (네트워크 트래픽 분석을 이용한 연쇄적 사이버공격 트래픽의 발생원 추적 방법)

  • Goo, Young-Hoon;Choi, Sun-Oh;Lee, Su-Kang;Kim, Sung-Min;Kim, Myung-Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.12
    • /
    • pp.1771-1779
    • /
    • 2016
  • In these days, the world is getting connected to the internet like a sophisticated net, such an environment gives a suitable environment for cyber attackers, so-called cyber-terrorists. As a result, a number of cyber attacks has significantly increased and researches to find cyber attack traffics in the field of network monitoring has also been proceeding. But cyber attack traffics have been appearing in new forms in every attack making it harder to monitor. This paper suggests a method of tracking down cyber attack traffic sources by defining relational information flow of traffic data from highest cascaded and grouped relational flow. The result of applying this cyber attack source tracking method to real cyber attack traffic, was found to be reliable with quality results.

Interaction between Turbulent Boundary Layer and Wake behind an Elliptic Cylinder at Incidence (앙각을 가진 타원형 실린더 후류와 평판 경계층의 상호작용에 대한 연구)

  • Choi, Jae-Ho;Lee, Sang-Joon
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.465-471
    • /
    • 2000
  • The flow characteristics around an elliptic cylinder with axis ratio of AR=2 located near a flat plate were investigated experimentally to study the interaction between the cylinder wake and the turbulent boundary layer. The pressure distributions on the cylinder surface and on the flat plate were measured with varying the angle of attack of the cylinder. In addition, the velocity profiles of wake behind the cylinder were measured using a hot-wire anemometry As the angle of attack increases, the location of peak pressure on the windward and leeward surfaces of the cylinder moves toward the rear and front of the cylinder, respectively. At positive angles of attack, the position of the minimum pressure on the flat plate surface is moved downstream, but it is moved upstream at negative angles of attack. With increasing the angle of attack, the vortex shedding frequency is gradually decreased and the critical angel of attack exists in terms of the gap ratio. By installing the elliptic cylinder at negative angle of attack, the turbulent boundary layer over the flat plate is disturbed more than that at positive incidence. This may be attributed to the shift of separation point on the lower surface of the cylinder according to the direction of the angle of attack.

  • PDF