• Title/Summary/Keyword: Attack Flow

Search Result 613, Processing Time 0.027 seconds

Flow and Heat Transfer Characteristics due to the Variations of the Angle of Attack at the Vortex Generators located behind a Circular Cylinder (원주 후미에 부착된 와동발생기의 영각 변화에 따른 유동 및 열전달 특성)

  • 하홍영;홍철현;양장식;이기백
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.439-449
    • /
    • 2002
  • Experimental investigations of the flow structure and heat transfer enhancement in a channel with a built-in circular cylinder and a wing-let type vortex generator are presented. Without any vortex generators, relatively low heat transfer takes place in the downstream of the circular cylinder where is a recirculation region with low velocity fluid is formed. However with a wing-let type longitudinal vortex generator in the wake region behind the cylinder, heat transfer in the region can be enhanced. In order to control the strength of longitudinal vortices, the angle of attack of the vortex generators is varied from $20^{circ} to 45^{\circ}$, but spacings between the vortex generations are fixed to be 5 mm. The 3-dimensional mean velocity field downstream of the vortex generator is measured by a five-hole pressure probe, and the hue-capturing method using thermochromatic liquid crystals has been used to provide the local distribution of the heat transfer coefficient. The vorticity field and streamwise velocity contour are obtained from the velocity field. Streamwise distributions of averaged Stanton number on the measurement planes show very similar trends for all the experimental cases($\beta=20^{circ}, 30^{circ} and 45^{\circ}$). Circulation strength and heat transfer coefficient have the maximum values when the angle of attack($\beta$) is $30^{\circ}$.

Aerodynamic forces on fixed and rotating plates

  • Martinez-Vazquez, P.;Baker, C.J.;Sterling, M.;Quinn, A.;Richards, P.J.
    • Wind and Structures
    • /
    • v.13 no.2
    • /
    • pp.127-144
    • /
    • 2010
  • Pressure measurements on static and autorotating flat plates have been recently reported by Lin et al. (2006), Holmes, et al. (2006), and Richards, et al. (2008), amongst others. In general, the variation of the normal force with respect to the angle of attack appears to stall in the mid attack angle range with a large scale separation in the wake. To date however, no surface pressures have been measured on auto-rotating plates that are typical of a certain class of debris. This paper presents the results of an experiment to measure the aerodynamic forces on a flat plate held stationary at different angles to the flow and allowing the plate to auto-rotate. The forces were determined through the measurement of differential pressures on either side of the plate with internally mounted pressure transducers and data logging systems. Results are presented for surface pressure distributions and overall integrated forces and moments on the plates in coefficient form. Computed static force coefficients show the stall effect at the mid range angle of attack and some variation for different Reynolds numbers. Normal forces determined from autorotational experiments are higher than the static values at most pitch angles over a cycle. The resulting moment coefficient does not compare well with current analytical formulations which suggest the existence of a flow mechanism that cannot be completely described through static tests.

Effects of Duct Aspect Ratios on Heat/Mass Transfer With Discrete V-Shaped Ribs (쐐기형 단락요철이 설치된 덕트의 종횡비가 열/물질 전달에 미치는 영향)

  • Lee, Dong-Hyun;Rhee, Dong-Ho;Cho, Hyung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1453-1460
    • /
    • 2003
  • The present study investigates the effects of rib arrangements and aspect ratios of a rectangular duct simulating the cooling passage of a gas turbine blade. Two different V-shaped rib configurations are tested with the aspect ratios (W/H) of 3 to 6.82. One is the continuous V-shaped rib configuration with $60^{\circ}$ attack angle, and the other is the discrete V-shaped rib configuration with $45^{\circ}$ attack angle. The square ribs with the pitch to height ratio of 10.0 are installed on the test section in a parallel arrangement for both rib configurations. Reynolds numbers based on the hydraulic diameter are changed from 10,000 to 30,000. A naphthalene sublimation method is used to measure local heat/mass transfer coefficients. For the continuous V-shaped rib configuration, two pairs of counter-rotating vortices are generated in a duct, and high transfer region is formed at the center of the ribbed walls of the duct. However, for the discrete V-shaped rib configuration with $45^{\circ}$ attack angle, complex secondary flow patterns are generated in the duct due to its geometric feature, and more uniform heat/mass transfer distributions are obtained for all tested cases

  • PDF

A Computational Study of the Vortical Flows over a Delta Wing At High-Angle of Attack (고영각의 델타익에서 발생하는 와유동에 관한 수치해석적 연구)

  • Kim Hyun-Sub;Kweon Yong-Hun;Kim Heuy-Dong;Shon Myong-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.795-798
    • /
    • 2002
  • This paper dispicts the vortical flow characteristics over a delta wing using a computational analysis for the purpose of investigating and visualizing the effect of the angle of attack and fee stream velocity on the low-speed delta wing aerodynamics. Computations are applied to the full, 3-dimensional, compressible, Navier-Stokes Equations. In computations, the free stream velocity is changed between 20m/s and 60m/s and the angle of attack of the delta wing is changed between $16^{\circ}\;and\;28^{\circ}$. For the correct prediction of the major features associated with the delta wing vortex flows, various turbulence models are tested. The standard $k-{\varepsilon}$ turbulence model predict well the vertical flows over the delta wing. Computational results are compared with the previous experimental ones. It is found that the present CFD results predict the vortical flow characteristics over the delta wing, and with an increase in the free steam velocity, the leading edge vortex moves outboard and its streangth is increased.

  • PDF

EXPERIMENTAL REPRODUCTION AND NUMERICAL ANALYSIS OF THE SIDE FORCE ON AN OGIVE FOREBODY AT A HIGH ANGLE OF ATTACK (고받음각 동체에 발생하는 측력의 실험적 재현 및 수치적 분석)

  • Lee, E.S.;Lee, J.I.;Lee, K.S.
    • Journal of computational fluids engineering
    • /
    • v.18 no.1
    • /
    • pp.28-35
    • /
    • 2013
  • Behavior of the side force generated at high angles of attack by two ogive-cylinder bodies of revolution with nose fineness ratio of 2.3 (B1) and 3.5 (B2) and the effect of a strip placed close the nose tip of each body (B1S and B2S) are analyzed through the wind tunnel test at ReD=200,000 and a=42~60 deg. The side force generated by B1 is increased by placing a strip. The side force generated by B2 is in the starboard direction and its magnitude is higher than that of the B1S. The effect of the strips with various dimensions placed on B2 is investigated. It is found that the 4-layer strip placed on the starboard reversed the direction of the side force into port direction. It is confirmed by numerical simulations that the strip promotes the flow separation and increases the average pressure on the side where it is placed and consequently produces the side force in the corresponding direction.

A Study on the Mass Transfer from a Square Cylinder Using Naphthalene Sublimation Technique (나프탈렌승화법을 이용한 사각관 주위에서의 물질전달에 관한 연구)

  • 유성연
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1300-1310
    • /
    • 1990
  • Naphthalene sublimation technique is employed to investigate the mass transfer processes from a square cylinder at various Reynolds numbers and various angles of attack. Distribution of the local mass transfer coefficients on each face of the cylinder changes dramatically with the angle of attack. Such variation of local mass transfer rates closely connected with the complex flow phenomena such as stagnation, acceleration, separation, reattachment and vortex shedding. The average Sherwood number has a minimum value at 12.deg.-13.deg., and a maximum value at a=20.deg.-25.deg. A comparison of present mass transfer measurement with other heat transfer measurements, using the heat/mass transfer analogy, shows good agreement in average transfer rates, same trend but notable differences in local values. Therefore, naphthalene sublimation technique can be adopted to explore heat transfer processes in the complex flow situations, which is considered to be hardly possible with the conventional heat transfer measurements.

Simulation of porous claddings using LES and URANS: A 5:1 rectangular cylinder

  • Xu, Mao;Patruno, Luca;Lo, Yuan-Lung;de Miranda, Stefano;Ubertini, Francesco
    • Wind and Structures
    • /
    • v.35 no.1
    • /
    • pp.67-81
    • /
    • 2022
  • While the aerodynamics of solid bluff bodies is reasonably well-understood and methodologies for their reliable numerical simulation are available, the aerodynamics of porous bluff bodies formed by assembling perforated plates has received less attention. The topic is nevertheless of great technical interest, due to their ubiquitous presence in applications (fences, windbreaks and double skin facades to name a few). This work follows previous investigations by the authors, aimed at verifying the consistency of numerical simulations based on the explicit modelling of the perforated plates geometry and their representation by means of pressure-jumps. In this work we further expand such investigations and, contextually, we provide insight into the flow arrangement and its sensitivity to important modelling and setup configurations. To this purpose, Unsteady Reynolds-Averaged Navier-Stokes (URANS) and Large-Eddy Simulations (LES) are performed for a 5:1 rectangular cylinder at null angle of attack. Then, using URANS, porosity and attack angle are simultaneously varied. To the authors' knowledge this is the first time in which LES are used to model a porous bluff body and compare results obtained using the explicit modelling approach to those obtained relying on pressure-jumps. Despite the flow organization often shows noticeable differences, good agreement is found between the two modelling strategies in terms of drag force.

Flow Analysis of Three-Dimensional Wing in Ground Effect (지면 효과를 갖는 3차원 날개의 유동해석)

  • Im Ye-Hoon;Chang Keun-Shik
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.84-90
    • /
    • 2000
  • Ground effect of three-dimensional wing is studied. LU-factored Implicit upwind TVD scheme and Baldwin-Lomax turbulence model are used for this calculation. To investigate ground effect, NACA 4415 wing at M=0.5 calculated. Two different angles of attack and three cases of flight height are calculated. As increasing angle of attack, the ground effect becomes strong. In case of NACA 4415 wing in ground effect, strength of wing tip vortex becomes stronger than that of free flight.

  • PDF

Effects of corner cuts and angles of attack on the Strouhal number of rectangular cylinders

  • Choi, Chang-Koon;Kwon, Dae-Kun
    • Wind and Structures
    • /
    • v.6 no.2
    • /
    • pp.127-140
    • /
    • 2003
  • An investigation into the effect of corner cuts on the Strouhal number of rectangular cylinders with various dimensional ratios and various angles of attack is described. The Strouhal number given as a function of corner cut size is obtained directly from the aerodynamic behavior of the body in a uniform flow through a series of wind-induced vibration tests. For a quick verification of the validity of the Strouhal numbers obtained in this way, they are compared with the approximated the Strouhal numbers based on Shiraishi's early research. The test results show that the Strouhal number of the model with various corner cuts has a fluctuating trend as the angle of attack changes. For each cutting ratio as the angle of attack increases at each cutting ratio above $15^{\circ}$, the Strouhal number decreases gradually, and these trends are more evident for larger corner cut sizes. However, a certain corner cut size which is effective in reducing the wind-induced vibration can be identified by larger Strouhal numbers than those of other corner cut sizes. Three distinct characteristics of Strouhal number variation can be identified in three regions which are termed as Region I, II, and III based on the general trend of the test results. It is also found that the corner cut is effective in one region (Region-II) and less effective in another one (Region-III) when only the vortex-induced vibration occurs.

Flow Visualization and Unstructured Grid Computation of Flow over a High-Speed Projectile (고속탄자 유동의 가시화 실험 및 비정렬격자 계산)

  • 이상길;최서원;강준구;임홍규;백영호;김두연;강호철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.12-20
    • /
    • 1998
  • Exter ballistics of a typical high-speed projectile is studied through a flow-visualization experiment and an unstructured grid Navier-Srokes computation. Experiment produced a schlieren photograph that adequately shows the characteristic features of this complex flow, namely two kinds of oblique cone shocks and turbulent wake developing into the downstream. A hybrid scheme of finite volume-element method is used to simulate the compressible Reynolds-Averaged Navier-Stok- es solution on unstructured grids. Osher's approximate Riemann solver is used to discretize the cinvection term. Higher-order spatial accuracy is obtained by MUSCL extension and van Albada ty- pe flux limiter is used to stabilize the numerical oscillation near the solution discontinuity. Accurate Gakerkin method is used to discretize the viscous term. Explict fourth-order Runge-Kutta method is used for the time-stepping, which simplifies the application of MUSCL extension. A two-layer k-$\varepsilon$ turbulence model is used to simulate the turbulent wakes accurately. Axisymmetric folw and two-dimensional flow with an angle of attack have been computed. Grid-dependency is also checked by carrying out the computation with doubled meshes. 2-D calculation shows that effect of angle of attack on the flow field is negligible. Axi-symmetric results of the computation agrees well with the flow visualization. Primary oblique shock is represented within 2-3 meshes in numerical results, and the varicose mode of the vortex shedding is clearly captured in the turbulent wake region.

  • PDF