• Title/Summary/Keyword: Attack

Search Result 6,297, Processing Time 0.033 seconds

A Study on an Extended Cyber Attack Tree for an Analysis of Network Vulnerability (네트워크 취약성 분석을 위한 확장된 사이버 공격 트리에 관한 연구)

  • Eom, Jung Ho;Park, Seon Ho;Chung, Tai M.
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.6 no.3
    • /
    • pp.49-57
    • /
    • 2010
  • We extended a general attack tree to apply cyber attack model for network vulnerability analysis. We defined an extended cyber attack tree (E-CAT) which extends the general attack tree by associating each node of the tree with a transition of attack that could have contributed to the cyber attack. The E-CAT resolved the limitation that a general attack tree can not express complex and sophisticate attacks. Firstly, the Boolean expression can simply express attack scenario with symbols and codes. Secondary, An Attack Generation Probability is used to select attack method in an attack tree. A CONDITION-composition can express new and modified attack transition which a aeneral attack tree can not express. The E-CAT is possible to have attack's flexibility and improve attack success rate when it is applied to cyber attack model.

Presentation Attacks in Palmprint Recognition Systems

  • Sun, Yue;Wang, Changkun
    • Journal of Multimedia Information System
    • /
    • v.9 no.2
    • /
    • pp.103-112
    • /
    • 2022
  • Background: A presentation attack places the printed image or displayed video at the front of the sensor to deceive the biometric recognition system. Usually, presentation attackers steal a genuine user's biometric image and use it for presentation attack. In recent years, reconstruction attack and adversarial attack can generate high-quality fake images, and have high attack success rates. However, their attack rates degrade remarkably after image shooting. Methods: In order to comprehensively analyze the threat of presentation attack to palmprint recognition system, this paper makes six palmprint presentation attack datasets. The datasets were tested on texture coding-based recognition methods and deep learning-based recognition methods. Results and conclusion: The experimental results show that the presentation attack caused by the leakage of the original image has a high success rate and a great threat; while the success rates of reconstruction attack and adversarial attack decrease significantly.

An Attack Behavior Expressions for Web Attack Analysis and Composing Attack Database (웹 공격 분석 및 공격 데이터베이스 생성을 위한 효과적인 표현 방법에 관한 연구)

  • Lee, Chang-Hoon
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.5
    • /
    • pp.725-736
    • /
    • 2010
  • Nowadays, followed the internet service contents increasing makes also increase attack case on the web system. Usually web attack use mixed many kinds of attack mechanism for successfully attack to the server system. These increasing of the kinds attack mechanism, however web attack defence mechanism is not follow the spread of the attack. Therefore, for the defends web application, web attack should be categorizing and analysing for the effective defense. In this paper, we analyze web attack specification evidence and behavior system that use for effective expressions what we proposed. Also, we generate web attack scenario, it is for using verification of our proposed expressions.

A Study on Effective Adversarial Attack Creation for Robustness Improvement of AI Models (AI 모델의 Robustness 향상을 위한 효율적인 Adversarial Attack 생성 방안 연구)

  • Si-on Jeong;Tae-hyun Han;Seung-bum Lim;Tae-jin Lee
    • Journal of Internet Computing and Services
    • /
    • v.24 no.4
    • /
    • pp.25-36
    • /
    • 2023
  • Today, as AI (Artificial Intelligence) technology is introduced in various fields, including security, the development of technology is accelerating. However, with the development of AI technology, attack techniques that cleverly bypass malicious behavior detection are also developing. In the classification process of AI models, an Adversarial attack has emerged that induces misclassification and a decrease in reliability through fine adjustment of input values. The attacks that will appear in the future are not new attacks created by an attacker but rather a method of avoiding the detection system by slightly modifying existing attacks, such as Adversarial attacks. Developing a robust model that can respond to these malware variants is necessary. In this paper, we propose two methods of generating Adversarial attacks as efficient Adversarial attack generation techniques for improving Robustness in AI models. The proposed technique is the XAI-based attack technique using the XAI technique and the Reference based attack through the model's decision boundary search. After that, a classification model was constructed through a malicious code dataset to compare performance with the PGD attack, one of the existing Adversarial attacks. In terms of generation speed, XAI-based attack, and reference-based attack take 0.35 seconds and 0.47 seconds, respectively, compared to the existing PGD attack, which takes 20 minutes, showing a very high speed, especially in the case of reference-based attack, 97.7%, which is higher than the existing PGD attack's generation rate of 75.5%. Therefore, the proposed technique enables more efficient Adversarial attacks and is expected to contribute to research to build a robust AI model in the future.

A Novel Technique to Detect Malicious Packet Dropping Attacks in Wireless Sensor Networks

  • Terence, J. Sebastian;Purushothaman, Geethanjali
    • Journal of Information Processing Systems
    • /
    • v.15 no.1
    • /
    • pp.203-216
    • /
    • 2019
  • The nature of wireless transmission has made wireless sensor networks defenseless against various attacks. This paper presents warning message counter method (WMC) to detect blackhole attack, grayhole attack and sinkhole attack in wireless sensor networks. The objective of these attackers are, to draw the nearby network traffic by false routing information and disrupt the network operation through dropping all the received packets (blackhole attack), selectively dropping the received packets (grayhole and sinkhole attack) and modifying the content of the packet (sinkhole attack). We have also attempted light weighted symmetric key cryptography to find data modification by the sinkhole node. Simulation results shows that, WMC detects sinkhole attack, blackhole attack and grayhole attack with less false positive 8% and less false negative 6%.

A Study on Multi-level Attack Detection Technique based on Profile Table (프로파일 기반 다단계 공격 탐지 기법에 관한 연구)

  • Yang, Hwan Seok
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.4
    • /
    • pp.89-96
    • /
    • 2014
  • MANET has been applied to a wide variety of areas because it has advantages which can build a network quickly in a difficult situation to build a network. However, it is become a victim of malicious nodes because of characteristics such as mobility of nodes consisting MANET, limited resources, and the wireless network. Therefore, it is required to lightweight attack detection technique which can accurately detect attack without causing a large burden to the mobile node. In this paper, we propose a multistage attack detection techniques that attack detection takes place in routing phase and data transfer phase in order to increase the accuracy of attack detection. The proposed attack detection technique is composed of four modules at each stage in order to perform accurate attack detection. Flooding attack and packet discard or modify attacks is detected in the routing phase, and whether the attack by modification of data is detected in the data transfer phase. We assume that nodes have a public key and a private key in pairs in this paper.

A Study on Mechanism of Intelligent Cyber Attack Path Analysis (지능형 사이버 공격 경로 분석 방법에 관한 연구)

  • Kim, Nam-Uk;Lee, Dong-Gyu;Eom, Jung-Ho
    • Convergence Security Journal
    • /
    • v.21 no.1
    • /
    • pp.93-100
    • /
    • 2021
  • Damage caused by intelligent cyber attacks not only disrupts system operations and leaks information, but also entails massive economic damage. Recently, cyber attacks have a distinct goal and use advanced attack tools and techniques to accurately infiltrate the target. In order to minimize the damage caused by such an intelligent cyber attack, it is necessary to block the cyber attack at the beginning or during the attack to prevent it from invading the target's core system. Recently, technologies for predicting cyber attack paths and analyzing risk level of cyber attack using big data or artificial intelligence technologies are being studied. In this paper, a cyber attack path analysis method using attack tree and RFI is proposed as a basic algorithm for the development of an automated cyber attack path prediction system. The attack path is visualized using the attack tree, and the priority of the path that can move to the next step is determined using the RFI technique in each attack step. Based on the proposed mechanism, it can contribute to the development of an automated cyber attack path prediction system using big data and deep learning technology.

An Architecture of a Dynamic Cyber Attack Tree: Attributes Approach (능동적인 사이버 공격 트리 설계: 애트리뷰트 접근)

  • Eom, Jung-Ho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.3
    • /
    • pp.67-74
    • /
    • 2011
  • In this paper, we presented a dynamic cyber attack tree which can describe an attack scenario flexibly for an active cyber attack model could be detected complex and transformed attack method. An attack tree provides a formal and methodical route of describing the security safeguard on varying attacks against network system. The existent attack tree can describe attack scenario as using vertex, edge and composition. But an attack tree has the limitations to express complex and new attack due to the restriction of attack tree's attributes. We solved the limitations of the existent attack tree as adding an threat occurrence probability and 2 components of composition in the attributes. Firstly, we improved the flexibility to describe complex and transformed attack method, and reduced the ambiguity of attack sequence, as reinforcing composition. And we can identify the risk level of attack at each attack phase from child node to parent node as adding an threat occurrence probability.

Security Analysis and Enhancement on Smart card-based Remote User Authentication Scheme Using Hash Function (효율적인 스마트카드 기반 원격 사용자 인증 스킴의 취약점 분석 및 개선 방안)

  • Kim, Youngil;Won, Dongho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.24 no.6
    • /
    • pp.1027-1036
    • /
    • 2014
  • In 2012, Sonwanshi et al. suggested an efficient smar card based remote user authentication scheme using hash function. In this paper, we point out that their scheme is vulnerable to offline password guessing attack, sever impersonation attack, insider attack, and replay attack and it has weakness for session key vulnerability and privacy problem. Furthermore, we propose an improved scheme which resolves security flaws and show that the scheme is more secure and efficient than others.

FuzzyGuard: A DDoS attack prevention extension in software-defined wireless sensor networks

  • Huang, Meigen;Yu, Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3671-3689
    • /
    • 2019
  • Software defined networking brings unique security risks such as control plane saturation attack while enhancing the performance of wireless sensor networks. The attack is a new type of distributed denial of service (DDoS) attack, which is easy to launch. However, it is difficult to detect and hard to defend. In response to this, the attack threat model is discussed firstly, and then a DDoS attack prevention extension, called FuzzyGuard, is proposed. In FuzzyGuard, a control network with both the protection of data flow and the convergence of attack flow is constructed in the data plane by using the idea of independent routing control flow. Then, the attack detection is implemented by fuzzy inference method to output the current security state of the network. Different probabilistic suppression modes are adopted subsequently to deal with the attack flow to cost-effectively reduce the impact of the attack on the network. The prototype is implemented on SDN-WISE and the simulation experiment is carried out. The evaluation results show that FuzzyGuard could effectively protect the normal forwarding of data flow in the attacked state and has a good defensive effect on the control plane saturation attack with lower resource requirements.