• Title/Summary/Keyword: Attached Mortar

Search Result 41, Processing Time 0.025 seconds

Pore Structure and Physical Properties of Heterogeneous Bonding Materials of Recycled Aggregate according to Carbonation Reforming (순환 골재 부착 이질재의 탄산화 개질에 따른 공극구조 및 물리적 특성)

  • Shin, Jin-Hak;Kim, Han-Sic;Chung, Lan;Ha, Jung-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.341-348
    • /
    • 2016
  • At present, about 40 million tons of concrete is dismantled each year, which accounts for the largest portion of the total amount of construction waste with 60.8%. It is known about 97.5% of it is recycled. However, most of the usage of waste concrete is limited to lower value-added business areas, and considering the increasing amount of waste concrete generated due to the deterioration of structures, the need for converting waste concrete to structural concrete is urgent. Therefore, this study aims at estimating the period for the optimum carbonation reforming to improve the quality of recycled aggregate, by making use of the method of accelerated carbonation reforming of the bonding heterogeneous (cement paste and mortar) for the purpose of converting recycled aggregate to structural concrete. Based on the period appropriate for the heterogeneous thickness and each bonding thickness of recycled aggregate which was drawn from previous studies, the changes in the characteristics and physical properties of pore structure according to progress of accelerated carbonation were analyzed. The result shows that with the progress of carbonation, the pore volume and the percentage of water absorption of the bonding heterogeneous decreased and the density increased, which indicates improvement of the product quality. But after certain age, the tendency was reversed and the product quality deteriorated. Synthesizing the results of previous studies and those of the present study, this study proposed 4 days and 14 days respectively for the period for the optimum carbonation reforming of recycled fine aggregate and recycled coarse aggregate.

Seismic evaluation of masonry railroad tunnels (조적식 철도터널의 내진성능평가에 관한 연구)

  • Lee, In-Mo;Jeong, Kyeong-Han;Lee, Jun-Suk;Choi, Jin-Yu;Shin, Young-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.4
    • /
    • pp.319-332
    • /
    • 2002
  • Domestic masonry railroad tunnel lining consists of red bricks or granite stone blocks and mortar. It is necessary to evaluate the behaviour of the masonry tunnel lining during an earthquake because the lining was constructed without the consideration of seismic loads. In this study, a methodology to evaluate the seismic resistant capacity of masonry tunnel linings was proposed, i.e. material property evaluation and seismic analysis technique. The red brick masonry tunnel lining is arrayed with multi-layers composed of 3 to 5 bricks depending on ground conditions and each brick is attached with mortar. Equivalent property concept was adopted to consider the stiffness difference among the red brick material itself and joints between bricks. Response spectrum analysis was performed by considering ground-structure interactions. A parametric study was performed to figure out the effect of relative stiffness between the lining and rock mass on the seismic behavior. A resonable countermeasure to minimize the earthquake-induced damage was also proposed.

  • PDF

Evaluation of Drainage Capacity of Precast Concrete-panel Retaining Wall Attached to In-situ Ground Using Numerical Analysis (수치해석을 이용한 원지반 부착식 판넬옹벽의 투수성 평가)

  • Kwon, Youg Kyu;Lee, Jae Won;Hwang, Young-cheol;Ban, Hoki;Lee, Minjae
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.3
    • /
    • pp.43-50
    • /
    • 2021
  • On the construction of new roads, the cut slope is inevitable and thus has been widely applied in the mountainous area. Particularly, the retaining wall with the precast concrete panel is often selected for its higher stability and mostly constructed in bottom-up method. However, the bottom-up method results in steeper slope as 1:0.05 before constructiong retaining wall and thus causes poor compaction at backfill which may induce instability during or after the construction. To overcome this problem, precast concrete panel retaining wall was attached in-situ ground (so called top-down). This paper presents the evaluation of drainage capacity of top-down method which has impermeable layer between panel and mortar being used to increase the ability of attachment of the precast concrete panel.

Experiment for the Improvement of Fire Resistance Capacity of Reinforced Concrete Flexural Member Strengthened with Carbon Fiber Reinforced Polymer (CFRP로 보강된 철근콘크리트 휨부재의 내화성능 개선을 위한 실험)

  • Lim, Jong-Wook;Seo, Soo-yeon;Song, Se-Ki
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.33 no.12
    • /
    • pp.19-27
    • /
    • 2017
  • This paper is a study to improve the fire-resistance capacity of reinforced concrete (RC) members strengthened by fiber-reinforced-polymer (FRP). The fire resistance of the RC members strengthened by FRP was evaluated through high temperature exposure test. In order to improve the fire resistance of the FRP reinforcing method, a fire-proof board was attached to the reinforced FRP surface and then the high temperature exposure test was carried out to evaluate the improvement of the fire resistance performance. It was confirmed that the resistance to high temperature of NSMR could be improved somewhat compared with that of EBR from the experiment that exposed to high temperature under the load corresponding to 40% of nominal strength. When 30 mm thick fire-resistance (FR) board is attached to the FRP surface, the surface of the reinforced FRP does not reach $65^{\circ}C$, which is the glass transition temperature (GTT) of the epoxy until the external temperature reaches $480^{\circ}C$. In particular, when a high performance fire-proof mortar was first applied prior to FR board attachment, the FRP portion did not reach the epoxy glass transition temperature until the external temperature reached $600^{\circ}C$.

Numerical formulation of a new solid-layer finite element to simulate reinforced concrete structures strengthened by over-coating

  • Suarez-Suarez, Arturo;Dominguez-Ramírez, Norberto;Susarrey-Huerta, Orlando
    • Coupled systems mechanics
    • /
    • v.11 no.5
    • /
    • pp.439-458
    • /
    • 2022
  • Over-coating is one of the most popular engineering practices to strengthen Reinforced Concrete (RC) structures, due to the relative quickness and ease of construction. It consists of an external coat bonded to the outer surface of the structural RC element, either by the use of chemical adhesives, mechanical anchor bolts or simply mortar injection. In contrast to these constructive advantages, the numerical estimation of the bearing capacity of the strengthened reinforced concrete element is still complicated, not only for the complexity of modelling a flexible membrane or plate attached to a quasi-rigid solid, but also for the difficulties that raise of simulating any potential delamination between both materials. For these reasons, the standard engineering calculations used in the practice remain very approximated and clumsy. In this work, we propose the formulation of a new 2D solid-layer finite element capable to link a solid body with a flexible thin layer, as it were the "skin" of the body, allowing the potential delamination between both materials. In numerical terms, this "skin" element is intended to work as a transitional region between a solid body (modelled with a classical formulation of a standard quadrilateral four-nodes element) and a flexible coat layer (modelled with cubic beam element), dealing with the incompatibility of Degrees-Of-Freedom between them (two DOF for the solid and three DOF for the beam). The aim of the solid-layer element is to simplify the mesh construction of the strengthened RC element being aware of two aspects: a) to prevent the inappropriate use of very small solid elements to simulate the coat; b) to improve the numerical estimation of the real bearing capacity of the strengthened element when the coat is attached or detached from the solid body.

Numerical formulation solid-layer finite element to simulate reinforced concrete structures strengthened by over-coating

  • Arturo Suarez-Suarez;Norberto Dominguez-Ramirez;Orlando Susarrey-Huerta
    • Coupled systems mechanics
    • /
    • v.12 no.6
    • /
    • pp.481-501
    • /
    • 2023
  • Over-coating is one of the most popular engineering practices to strengthen Reinforced Concrete (RC) structures, due to the relative quickness and ease of construction. It consists of an external coat bonded to the outer surface of the structural RC element, either by the use of chemical adhesives, mechanical anchor bolts or simply mortar injection. In contrast to these constructive advantages, the numerical estimation of the bearing capacity of the strengthened reinforced concrete element is still complicated, not only for the complexity of modelling a flexible membrane or plate attached to a quasi-rigid solid, but also for the difficulties that raise of simulating any potential delamination between both materials. For these reasons, the standard engineering calculations used in the practice remain very approximated and clumsy. In this work, we propose the formulation of a new 2D solid-layer finite element capable to link a solid body with a flexible thin layer, as it were the "skin" of the body, allowing the potential delamination between both materials. In numerical terms, this "skin" element is intended to work as a transitional region between a solid body (modelled with a classical formulation of a standard quadrilateral four-nodes element) and a flexible coat layer (modelled with cubic beam element), dealing with the incompatibility of Degrees-OfFreedom between them (two DOF for the solid and three DOF for the beam). The aim of the solid-layer element is to simplify the mesh construction of the strengthened RC element being aware of two aspects: a) to prevent the inappropriate use of very small solid elements to simulate the coat; b) to improve the numerical estimation of the real bearing capacity of the strengthened element when the coat is attached or detached from the solid body.

Composition and Strength Characteristics of Concrete Foundation for Affiliated Ward in Seoul Daehan Uiwon (General Hospital) (서울 대한의원(사적 제248호) 부속병동 콘크리트 기초의 조성과 강도 특성)

  • Kang, San Ha;Kim, Dong Woo;Lee, Chan Hee;Kim, Hyun Mi
    • Journal of Conservation Science
    • /
    • v.32 no.3
    • /
    • pp.299-312
    • /
    • 2016
  • The Daehan Uiwon (Historic Site No. 248) in which the predecessor of Seoul National University Hospital is a crucial medical institution that built in the Korean Empire period. One of them, East 1 Affiliated Ward that attached to Daehan Uiwon was built with concrete foundation in 1908 and extended two times in 1935 and 1954. As a result of material scientific analysis for concrete foundation, all of the foundation is composed of mortar and stone aggregates, however, the mixing proportions between the aggregate and the mortar were confirmed to be different with construction periods. To determine the mixing proportion, and physical properties by ultrasonic velocity and rebound hardness, the concrete foundations by construction period were obtained. In result, 1954's mixing proportion of concrete between mortar and stone aggregate indicated the highest ratio of aggregates with 1 : 35, mean value of ultrasonic velocity and unconfined compressive strength were calculated with 450 m/s and 18.92 MPa in 1954's constructions that is the lowest values compared with other times. As a result, the difference characteristics of physical properties by construction periods are possible interpreted with porosities and mixing ratios of stone aggregates.

Development of Accelerator Control System for Wet Shotcrete Spraying Equipment (습식 숏크리트 뿜칠 장비의 급결제 유량 제어 시스템 개발)

  • Tae-Ho, Kang;Soo-Ho, Chang;Soon-Wook, Choi;Jin-Tae, Kim;Bong-Gyu, Kim;Chulho, Lee
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.353-362
    • /
    • 2022
  • The wet shotcrete refers to a method in which all materials are mixed and then supplied to the spraying device, compressed air is added to the nozzle, and the spraying speed is improved to spray on the target surface. In order to reproduce the amount of shotcrete used in the wet method in the field and the situation at the laboratory scale, it is essential to control the discharge amount of the equipment. In this study, in order to increase the reproducibility of field conditions at the laboratory scale, a flow control system for shotcrete mortar spraying equipment was developed and applied to the equipment. To verify the developed equipment, a discharge control test using water and mortar was performed. In the developed control system, the discharge was smoothly controlled according to the user input value for the mono pump, but the discharge was not properly controlled according to the input value for the screw pump because of a reducer. When a speed reducer is attached, it is necessary to adjust the operation rate of the screw pump close to the target flow rate by increasing the operation rate of the screw pump while lowering the operation rate of the mono pump.

Effect of Spray and Immersion Treatment of Mono-Ammonium Phosphate Solution on Properties of Recycled Fine Aggregate (일인산 암모늄 수용액 분사 및 침지처리가 순환잔골재의 물성 변화에 미치는 영향)

  • Seong-Jun Kwon;Seong-Ho Kim;Chan-Woo Park;Chul-Woo Chung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.3
    • /
    • pp.314-321
    • /
    • 2024
  • Due to the depletion of natural aggregate resources, the use of recycled aggregates became an urgent issue. Microcracks generated during production of recycled aggregate and cement paste attached to the surface of aggregate have been the biggest obstacles to promote the use of recycled aggregate. To alleviate such problem, this study attempted the spray and immersion treatment of recycled fine aggregate using mono-ammonium phosphate solution, which is known to be effective for reducing the pH of recycled aggregate. The changes in physical properties before and after treatment were observed, and the compressive strength of mortar specimen was evaluated. According to the experimental results, the absorption capacity of the recycled fine aggregate increased with reduction in pH after mono-ammunium phosphate treatment. Calcium hydroxide and ettringite was removed, and skeletal density of recycled fine aggregate increased due to the formation of hydroxyapatite. Despite the increase in absorption capacity, the compressive strength of the mortar increased and it seems to be associated with the increase in adhesion strength at the interface between cement paste and recycled fine aggregate. When the concentration of ammonium monophosphate aqueous solution was excessive (immersion: 15% and 20%, spraying 20%), the compressive strength of the mortar decreased, which seemed to be related to the increase in the absorption capacity caused by the the excessive dissolution of the hydration products such as portlandite and ettringite.

Strainer Cleaning Using Blasting of Detonating Cords (도폭선 발파를 통한 스트레이너 재생)

  • Yang, Hyung-Sik;Kim, Jong-Gwan;Choi, Mi-Jin;Lee, Kyung-Jin;Doo, Joon-Kee;Kim, Jeong-Gyu
    • Explosives and Blasting
    • /
    • v.27 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • The strainer can be clogged by dusts in a well. As a result, the permeability of a strainer is extremely reduced. This paper is intended to propose a cleaning method of strainer using blasting pressure of the detonating cords and to examine the applicability of this method. The pressure range that was not expected to affect the strainer was estimated. Test results of $3,000\;kg/cm^2$ pressure with a diameter of 12 cm without damage to the strainer was found to be appropriate. The mortar attached to the strainer was almost completely eliminated.