• Title/Summary/Keyword: Atomization efficiency

Search Result 164, Processing Time 0.023 seconds

An Experimental Study on The Effect of Ultrasonic Atomization in Agricultural Twin-fluid Nozzle (농업용 액체 분무용 초음파 분사효과에 관한 실험적 연구)

  • Chung, J.D.;Lim, Y.J.
    • Journal of ILASS-Korea
    • /
    • v.8 no.4
    • /
    • pp.1-8
    • /
    • 2003
  • The objective of this study is to investigate experimentally atomization characteristics for differently made an ultrasonic twin-fluid nozzle. A spray system, an ultrasonic system, and three different type(Nozzle type, Tube type, Conventional type)are made and tested by applied with ultrasonic energy. In this investigation, the measurement and calculation of spray droplet are to analyze the effects of ultrasonic energy on the agricultural atomization system. Through the measurement of suray angle, spray column using, high speed camera and PDA, it is found that nozzle type is highest efficiency than that of tube type and conventional type. It was found that the ultrasonic energy increased the atomization efficiency of spray droplets about 9% respectively and spray angle was wide spray.

  • PDF

Atomization Characteristics of Coal-Water Mixture Fuel (석탄-물 혼합연료(CWM)의 분무 특성)

  • 노남선;신대현;김광호
    • Journal of Energy Engineering
    • /
    • v.3 no.2
    • /
    • pp.130-150
    • /
    • 1994
  • Coal-water mixture(CWM) fuel has attracted much attention as a substitute fuel for oil by which high economics and short-term commercialization might be realized in comparison with other coal conversion technologies. There are many factors that affect the CWM combustibility, such as the physical properties of CWM, the performance of atomizer and burner, operating conditions, capacity and load of the boiler, etc. Particularly, atomization quality is extremely critical to achieving acceptable carbon conversion efficiency of CWM fuel and maintaining the flame stability, because the coal particles in the CWM droplets burn as agglomerates. This paper presents the R&D results about the CWM atomization characteristics, including the significance of CWM atomization the R&D results about the CWM atomization characteristics, including the significance of CWM atomization quality, the atomization and combustion mechanism, the type of CWM atomizer, size and size distribution of CWM droplets and some factors that influence the atomization performance.

  • PDF

A study on Characteristics of the Liquid Atomization by Ultrasonic (초음파에 의한 액체 미립화 특성에 관한 연구)

  • 주은선;나우정;최우창
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.31-39
    • /
    • 1999
  • A good atomization in uniform size brings the elevation of thermal efficiency in spray combustion, the beautiful painting on surfaces, and the economical sprinkling of chemicals. Ultrasonic atomization has been expected as a good uniform atomization mechanism due to its uniform size distribution. Influx, load, and physical properties of liquids are the effecting factors to atomize liquids. In this study, distilled water and city water are selected as reference liquids and gasoline, kerosene, and petroleum as fuel liquids. Characteristics and affinity to get the maximum effect for the ultrasonic atomization are observed by using the two ultrasonic transducers with 28kHz and 2MHz. Results show that the size distributions of liquid spray dorplet by the direct vibration method prevail over those by the aerosol method in uniform droplet size and as a whole, sizes of spray liquid droplets are increased slightly according to increasing influx in the direct vibration method and quantities of spray droplets in the aerosol method decreasing according to increasing liquid load h.

  • PDF

An Analysis Results of Agricultural Ultrasonic Twin-fluid Nozzle (농업용 액체 분무용 초음파 분사 시스템 해석)

  • Chung, Jin-Do
    • Journal of ILASS-Korea
    • /
    • v.8 no.3
    • /
    • pp.1-9
    • /
    • 2003
  • The objective of this study is to compare atomization characteristics for differently made an ultrasonic twin-fluid nozzle. A spray system, an ultrasonic system, and three different type(Nozzle type, Tube type. Conventional type)are made and compared experimental and numerical results. In this investigation, the measurement and numerical analysis of spray droplet are to analyze the effects of ultrasonic energy on the agricultural atomization spray system in order to protection of dispersion droplets. It is clarified that ultrasonic energy forcing into a nozzle is valid to obtain atomization enchancement. As the result of comparing the experimental and numerical result, it is confirmed that nozzle type is highest efficiency than that of tube type and conventional type, also well fit, respectively.

  • PDF

Effects of Perforated Throttle Valve on the Mixture Flow and Secondary Atomization of Fuel Spray (다공스로틀밸브가 혼합기 유동과 연료 분무의 2차 미립화에 미치는 영향)

  • Cho, B.O.;Cho, H.M.;Lee, C.S.
    • Journal of ILASS-Korea
    • /
    • v.1 no.3
    • /
    • pp.60-66
    • /
    • 1996
  • Finely atomized fuel droplet and good mixed mixture plays very important in improving combustion efficiency in an spark ignition engine. And combustion efficiency has influence directly on the engine power, fuel consumption rate and pollutant emission. In this study, perforated throttle valve which has relatively low value of PR has been developed and studied for the purpose of improving those aims. As a result of this study, it has been verified that the perforated throttle valve makes droplet more finely, and also proved that has a function of contributing to form good mixed mixture, especially in mixture preparation system of carburetor or SPI type spark ignition engine.

  • PDF

Atomization Effects of Diesel on Autothermal Reforming Reaction (디젤연료의 미립화에 따른 자열개질 반응특성에 관한 연구)

  • Bae, Joong-Myeon;Yoon, Sang-Ho;Kang, In-Yong
    • Journal of ILASS-Korea
    • /
    • v.11 no.4
    • /
    • pp.234-243
    • /
    • 2006
  • Diesel autothermal reforming (ATR) is a chemical process to produce hydrogen for fuel cell applications. Several previous studies were carried out to identify technical issues in diesel reforming. It is hard to vaporize diesel due to its high boiling points. Liquid droplets of diesel result in inhomogeneous fuel mixing with other reactants such as $O_2\;and\;H_2O$, which leads to reduce the reforming efficiency and make undesired coke in reactor. To solve the fuel delivery issue, we applied an ultrasonic device as a fuel injection system. Ultrasonic injector (UI) remarkably enhanced the reforming efficiency. This paper will present the reforming results using UI. And we will discuss about atomization effects of diesel on autothermal reforming reaction.

  • PDF

Effect of Atomization Characteristics of Twin Fluid Nozzle on Urea Pyrolysis (이유체 노즐 미립화 특성이 요소 열분해에 미치는 영향)

  • Ku, Kun Woo;Chung, Kyung Yul;Yoon, Hyun Jin;Seok, Ji Kwon;Hong, Jung Goo
    • Journal of ILASS-Korea
    • /
    • v.20 no.3
    • /
    • pp.162-167
    • /
    • 2015
  • Recently, there has been rising interest in applying urea-SCR systems to large marine diesel engines because the International Maritime Organization (IMO) has decided to enforce NOx reduction regulations. Generally, in the case of urea-SCR of the marine diesel engine, a type of twin fluid atomizer has been using for injection of the urea solution. This study conducted to investigate an effect of the atomization of external-mixing twin fluid nozzle on the conversion efficiency of reductant. The lab-scaled experiment device was installed to mimic the urea-SCR system of the marine diesel engine for this study. In a low temperature inflow gas condition which is similar with the exhaust temperature of large marine diesel engine, this study found that the conversion efficiency of reductant of when relative big size urea solution droplets are injected into exhaust gas stream can be larger than that of when small size urea solution droplets are injected. According to results of this study, the reason was associated with decrease of reaction rate constant caused from temperature drop of inflow gas by assist air of twin fluid atomizer.

Spray Characteristics on the Electrostatic Rotating Bell Applicator

  • Im, Kyoung-Su;Lai, Ming-Chia;Yoon, Suck-Ju
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.2053-2065
    • /
    • 2003
  • The current trend in automotive finishing industry is to use more electrostatic rotating bell (ESRB) need space to their higher transfer efficiency. The flow physics related with the transfer efficiency is strongly influenced by operating parameters. In order to improve their high transfer efficiency without compromising the coating quality, a better understanding is necessary to the ESRB application of metallic basecoat painting for the automobile exterior. This paper presents the results from experimental investigation of the ESRB spray to apply water-borne painting. The visualization, the droplet size, and velocity measurements of the spray flow were conducted under the operating conditions such as liquid flow rate, shaping airflow rate, bell rotational speed, and electrostatic voltage setting. The optical techniques used in here were a microscopic and light sheet visualization by a copper vapor laser, and a phase Doppler particle analyzer (PDPA) system. Water was used as paint surrogate for simplicity. The results show that the bell rotating speed is the most important influencing parameter for atomization processes. Liquid flow rate and shaping airflow rate significantly influence the spray structure. Based on the microscopic visualization, the atomization process occurs in ligament breakup mode, which is one of three atomization modes in rotating atomizer. In the spray transport zone, droplets tend to distribute according to size with the larger drops on the outer periphery of spray. In addition, the results of present study provide detailed information on the paint spray structure and transfer processes.

A Study on the Characteristics of Gasoline Engine Performance Equipped with Perforated Throttle Valve (다공 스로틀밸브 장착 가솔린기관의 성능 특성에 관한 연구)

  • Cho, B.O.;Lee, C.S.
    • Journal of ILASS-Korea
    • /
    • v.1 no.2
    • /
    • pp.50-56
    • /
    • 1996
  • In an fuel injection type gasoline engine, atomization of fuel droplet and mixture formation process are very important to understand engine combustion efficiency, and also has influence directly on the decision of engine performance and pollutant emission. In this study, perforated throttle valve instead of solid type throttle valve was developed and equipped to an SPI engine to promote secondary atomization and good droplet-air mixture formation. From the engine performance lest. it was verified that the case of perforated valve kas more advantages in each experimental parameters such as in cylinder gas pressure, mass burnt ratio, fuel consumption rate, and pollutant emission characteristics than that of solid one equipped. No matter what the same perforated valve, there are some distinct results in engine performance characteristics according to the perforate ratio.

  • PDF

Spray characteristics of twin-fluid atomization using external-mixing sonic nozzles (외부혼합형 음속노즐을 사용한 2유체 미립화의 분무특성)

  • Park, Byeong-Gyu;Lee, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.1
    • /
    • pp.132-139
    • /
    • 1997
  • Spray characteristics of external mixing sonic twin-fluid atomization nozzles are investigated experimentally. Particle sizes are measured by the Fraunhofer diffraction method using the Malvern particle analyzer, and their radial distributions are obtained using the tomographical transformation technique. The spatial distribution of SMD shows that the drop size increases in the radial direction at a fixed liquid flow rate, and the distribution is getting uniform rapidly as the atomizing gas pressure increases. The SMD decreases as the liquid flow rate increases at a fixed GLR. It is found that the atomization efficiency of the flush type sonic nozzle is superior to that of protrusion type. The effect of laser beam diameter of the particle analyzer on the spatial SMD distribution is minor at present experimental conditions.