• Title/Summary/Keyword: Atomic vapor

Search Result 461, Processing Time 0.033 seconds

AFM을 이용한 나노 입자의 조립에 관한 연구

  • 박준기;한창수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.152-152
    • /
    • 2004
  • 카본나노튜브(Carbon Nanotube)는 다른 물질과 구별되는 날카로움(Sharpness), 고세장비(High Aspect Ratio), 높은 기계적 강성(Stiffness), 고탄성(high Elasticity), 그리고 반도체(semi-conducting)와 도체(Metallic) 성질 때문에, 카본나노튜브는 많은 연구에 적용되고 있으며, 카본나노튜브가 부착된 AFM(Atomic Force Microscope) 팁을 이용한 AFM 측정은 CNT 응용에 있어서 매우 큰 효과를 내는 응용분야 중 하나이다. AEM 팁에 카본나노튜브를 붙이는 이전 연구는 대부분 화학증착법(Chemical Vapor Deposition)에 의해 이루어 졌으며, 매우 효과적인 방법이지만 고가의 장비와 고온의 챔버내에서 이루어진다는 문제점을 가지고 있다.(중략)

  • PDF

Anomalous Dispersion in Cs Atomic Vapor Cell (세슘원자셀에서의 비정상 분산)

  • 강훈수;김재필;오차환;송석호;김필수
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2001.02a
    • /
    • pp.254-255
    • /
    • 2001
  • 매질의 공진주파수 근처에서는 주파수가 커짐에 따라 매질의 굴절률이 감소하는 비정상 분산 특성을 나타낸다. 본 실험에서는 세슘원자의 비정상 분산 특성을 실험적으로 관측할 수 있는 방법을 연구하였다. 가열된 세슘원자셀(16$0^{\circ}C$)에 CS D$_2$ 전이선에 공진되는 레이저빔을 입사하여 레이저의 주파수에 따른 레이저빔의 굴절각도를 측정하였다(그림1) 레이저빔의 굴절각의 변화를 용이하게 측정하기 위해 원자셀 벽에 굴절률이 1.5 인 프리즘을 장착하고 원자빔을 전반사의 임계각보다 조금 작은 각도로 입사하여 투과광의 굴절각을 측정하였다. (중략)

  • PDF

Pulsed electromagnetically induced transparecny and elimination of self-focusing or self-defocusing in atomic samarium vapor (사마리움 원자증기에서 펄스 전자기유도투과와 자체집속 및 확산의 제거)

  • 오명규;이원규;최원식;전진호;안경원;이재형
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.44-45
    • /
    • 2003
  • 전자기 유도 투과란 매질 속을 진행하는 빛의 투과가 다른 강한 빛의 작용으로 증가하게 되는 결맞음 현상을 말한다. 이러한 전자기 유도 투과는 또한 굴절율의 변화를 동반하게 되며, 그 결과 매질을 진행해 나가는 레이저빔은 유도 집속 및 확산, 또는 자체집속 및 확산의 제거 등을 겪게 된다. 이러한 원리를 이용하여 M. Jain 등은 납 증기에서 원공명 조건의 결맞음 밀도 포획을 이용한 자체집속의 제거에 성공한바 있다. (중략)

  • PDF

Single-Domain-Like Graphene with ZnO-Stitching by Defect-Selective Atomic Layer Deposition

  • Kim, Hong-Beom;Park, Gyeong-Seon;Nguyen, Van Long;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.329-329
    • /
    • 2016
  • Large-area graphene films produced by means of chemical vapor deposition (CVD) are polycrystalline and thus contain numerous grain boundaries that can greatly degrade their performance and produce inhomogeneous properties. A better grain boundary engineering in CVD graphene is essential to realize the full potential of graphene in large-scale applications. Here, we report a defect-selective atomic layer deposition (ALD) for stitching grain boundaries of CVD graphene with ZnO so as to increase the connectivity between grains. In the present ALD process, ZnO with hexagonal wurtzite structure was selectively grown mainly on the defect-rich grain boundaries to produce ZnO-stitched CVD graphene with well-connected grains. For the CVD graphene film after ZnO stitching, the inter-grain mobility is notably improved with only a little change in free carrier density. We also demonstrate how ZnO-stitched CVD graphene can be successfully integrated into wafer-scale arrays of top-gated field effect transistors on 4-inch Si and polymer substrates, revealing remarkable device-to-device uniformity.

  • PDF

Heteroepitaxial Growth of Diamond Films Synthesized by Microwave Plasma Enhanced Chemical Vapor Deposition

  • Kim, Yoon-Kee;Lee, Jai-Young
    • The Korean Journal of Ceramics
    • /
    • v.2 no.4
    • /
    • pp.197-202
    • /
    • 1996
  • The highly oriented diamond particles were deposited on the mirror-polished (100) silicon substrates in the bell-jar type microwave plasma deposition system using a three-step process consisting if carburization, bias-enhanced nucleation and growth. By adjusting the geometry of the substrate and substrate holder, very dense disc-shaped plasma was formed over the substrate when the bias voltage was below -200V. Almsot perfectly oriented diamond films were obtained only in this dense disc-shaped plasma. From the results of the optical emission spectra of the dense disc-shaped plasma, it was found that the concentrations of atomic hydrogen and hydrocarbon radical were increased with negative bias voltage. It was also found that the highly oriented diamonds were deposited in the region, where the intensity ratios of carbonaceous species to atomic hydrogen are saturated.

  • PDF

Irradiation Induced Defects in a Si-doped GaN Single Crystal by Neutron Irradiation

  • Park, Il-Woo
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.12 no.2
    • /
    • pp.74-80
    • /
    • 2008
  • The local structure of defects in undoped, Si-doped, and neutron irradiated free standing GaN bulk crystals, grown by hydride vapor phase epitaxy, has been investigated by employing electron magnetic resonance(EMR), Raman scattering and cathodoluminescence. The GaN samples were irradiated to a dose of $2{\times}10^{17}$ neutrons in an atomic reactor at Korea Atomic Energy Research Institute. There was no appreciable change in the Raman spectra for undoped GaN samples before and after neutron irradiation. However, a forbidden transition, $A_1$(TO) mode, appeared for a neutron irradiated Si-doped GaN crystal. Cathodoluminescence spectrum for the neutron irradiated Si-doped GaN crystal became much broader or was much more broadened than that for the unirradiated one. The observed EMR center with the g value of 1.952 in a neutron irradiated Si-doped GaN may be assigned to a Si-related complex donor.

Ballistic Electron Emitter using Nanocrystallized Poly-Si (Nanocrystallized Poly-Si을 이용한 Ballistic 전자 에미터)

  • Choi, Yong-Woon;Lee, Byung-Cheol
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.489-490
    • /
    • 2008
  • As anodizing method using poly-Si (polycrystalline silicon) grown by LPCVD (Low Pressure Chemical Vapor Deposition), a ballistic electron emitter was made. An OPPS (Oxidized Porous Poly-Si) structure can generate ballistic electron which can pass through without scattering owing to electric field of oxide layer wrapped around nanocrystal due to applied voltage of between surface and bottom electrode. As electrode, (Al, Au and Pt/ti) were used. In this case, there were the better characteristics in Al and Pt/ti than in Al and Au.

  • PDF

Characterization of Aluminum Oxide Thin Film Grown by Atomic Layer Deposition for Flexible Display Barrier Layer Application

  • Kopark, Sang-Hee;Lee, Jeong-Ik;Yang, Yong-Suk;Yun, Sun-Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.746-749
    • /
    • 2002
  • Aluminum oxide thin films were grown on a poly ethylene naphthalate (PEN) substrate at the temperature of 100$^{\circ}C$ using atomic layer deposition method. The film showed very flat morphology and good adhesion to the substrate. The visible spectrum showed higher transmittance in the range from 400 nm to 800 nm than that of PEN. The water vapor transmission value measured with MOCON for 230nm oxide-deposited PEN was 0.62g/$m^2$/day @ 38$^{\circ}C$, while that of PEN substrate was 1.4g/$m^2$/day @ 38$^{\circ}C$.

  • PDF

Hafnium Oxide Nano-Film Deposited on Poly-Si by Atomic Layer Deposition

  • Wei, Hung-Wen;Ting, Hung-Che;Chang, Chung-Shu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.496-498
    • /
    • 2005
  • We reported that high dielectric hafnium oxide nano-film deposited by thermal atomic layer deposition on the poly-silicon film (poly-Si). The poly -Si film was produced by plasma enhanced chemical vapor deposition and excimer laser annealing. We used the hafniu m chloride ($HfCl_4$) and water as the precursors and analyzed the hafnium oxide film by transmission electron microscope and secondary ion mass spectrometer. Hafnium oxide produced by the ALD method showed very good coverage on the rough surface of poly-Si film. While deposited with 200 cycles, these hafnium oxide films revealed a relatively smooth surface and good uniformity, but the cumulative roughness produced by the incomplete reaction was apparent when the amount of deposition cycle increased to 600 cycles.

  • PDF

1차원 무기 반도체 신 물질 재료의 연구 개발 동향

  • Ryu, Hak-Gi
    • Ceramist
    • /
    • v.21 no.2
    • /
    • pp.29-37
    • /
    • 2018
  • In order to overcome the problems of existing low-dimensional materials (carbon nanotubes, graphene, transition metal dichalcogenides, etc) researches on new 1D materials have been studied. In the case of $LiMo_3Se_3$ and $Mo_6S_{9-x}I_x$, continuous researches have been carried out for 3D bulk synthesis and atomic scale dispersion. Recently, quantum confinement effect of $LiMo_3Se_3$ and bio-stability of $Mo_6S_{9-x}I_x$ have been proven and various applications have started to be studied. In addition, device application results using new 1D materials such as $Sb_2Se_3$ (optoelectronic devices using the property of effectively reducing exciton decay due to no dangling bond) and $VS_4$ (electrochemical energy storage using the space between 1-D nanostructures) have been reported very importantly. Therefore, it can be claimed that it has reached a very important time to find and synthesize new 1D materials and to report various characteristics not existing.