• Title/Summary/Keyword: Atomic ion beam

Search Result 200, Processing Time 0.031 seconds

SiNx 무기 박막의 수직액정 배향 능력

  • Kim, Byeong-Yong;Kim, Yeong-Hwan;Park, Hong-Gyu;O, Byeong-Yun;Ok, Cheol-Ho;Han, Jeong-Min;Seo, Dae-Sik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.185-185
    • /
    • 2009
  • The aligned liquid crystals (LCs) display on SiNx thin films using ion-beam (IB) irradiation was studied with controllability ofpretilt angle depending on incident energies of the IB. Plasma-enhanced chemical vapor deposition (PECVD) was used to orient the LCs on SiNx alignment films. The LCs alignment property for the SiNx thin films were observed to verify the practical application potential (figure1). A good LCs alignment of vertical alignment LCs cells on SiNx thin film surfaces irradiated with incident IB energy of 1800eV was achieved. Also, a good LC alignment by the IB irradiation on the SiNx thin film surface was observed at an annealing temperature of $180^{\circ}C$. However, the alignment defects of the nematic liquid crystal was observed at an annealing temperature above $230^{\circ}C$. The atomic force microscopy (AFM) images of LCs on SiNx thin film surfaces irradiated with IB energy was used for the surface analysis.

  • PDF

Characteristics of Pt thin films on WC for glass lens molding (유리렌즈 성형용 초경합금의 Pt 박막의 특성에 관한 연구)

  • Park, Soon-Sub;Lee, Ki-Yung;Won, Jong-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.3
    • /
    • pp.62-67
    • /
    • 2009
  • Pt thin films on Cr or Ti interlayer were deposited onto a tungsten carbide(WC) substrate by the ion beam assisted DC magnetron sputtering. The various atomic percent of Cr and Ti underneath of the Pt films were prepared to examine the total thin film characteristics. The microstructure and surface analysis of the specimen were conducted by using the SEM, XRD and AFM. Mechanical properties such as hardness and adhesion strength of Pt thin film also were examined. The interlayer of pure Ti was formed with 40 nm thickness while that of pure Cr was done with 50 nm as standard reference. The growth rate of either Cr or Ti thin film was almost same under the same deposition conditions. The SEM images showed that anisotropic grain of Pt thin films consisting of dense columnar structures irrespectively grew from the different target compositions. The values of hardness and adhesion strength of Cr/Pt thin film coated on a WC substrate were higher than those of Ti/Pt thin film.

  • PDF

Interface study of ion irradiated Cu/Ni/Cu(001)/Si thin film by X-ray reflectivity (이온 조사된 Cu/Ni/Cu(001)/Si 자성박막에 있어서 X-ray reflectivity를 이용한 계면 연구)

  • Kim, T.G.;Song, J.H.;Lee, T.H.;Chae, K.H.;Hwang, H.M.;Jeon, G.Y.;Lee, J;Jeong, K.;Whang, C.N.;Lee, J.S.;Lee, K.B.
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.5
    • /
    • pp.184-188
    • /
    • 2002
  • The Cu/Ni/Cu(002)/Si(100) films which have perpendicular magnetic anisotropy were deposited by e-beam evaporation methods. From the reflection high energy electron diffraction pattern, the films were confirmed to be grown epitaxially on silicon. After 2X lots ions/$\textrm{cm}^2$ C+ irradiation, magnetic easy-axis was changed from surface normal to in-plane as shown in the hysteresis loop of magneto-optical Kerr effects. It became manifest from analysis of X-ray reflectivity and grazing incident X-ray diffraction that even though interface between top Cu layer and Ni layer became rougher, the contrast of Cu and Ni's electron density became manifest after ion irradiation. In addition, the strain after deposition of the films was relaxed after ion irradiation. Strain relaxation related with change of magnetic properties and mechanism of intermixed layer's formation was explained by thermo-chemical driving force due to elastic and inelastic collision of ions.

Nano Bio Imaging for NT and BT

  • Moon, DaeWon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.51.2-51.2
    • /
    • 2015
  • Understanding interfacial phenomena has been one of the main research issues not only in semiconductors but only in life sciences. I have been trying to meet the atomic scale surface and interface analysis challenges from semiconductor industries and furthermore to extend the application scope to biomedical areas. Optical imaing has been most widely and successfully used for biomedical imaging but complementary ion beam imaging techniques based on mass spectrometry and ion scattering can provide more detailed molecular specific and nanoscale information In this presentation, I will review the 27 years history of medium energy ion scattering (MEIS) development at KRISS and DGIST for nanoanalysis. A electrostatic MEIS system constructed at KRISS after the FOM, Netherland design had been successfully applied for the gate oxide analysis and quantitative surface analysis. Recenlty, we developed time-of-flight (TOF) MEIS system, for the first time in the world. With TOF-MEIS, we reported quantitative compositional profiling with single atomic layer resolution for 0.5~3 nm CdSe/ZnS conjugated QDs and ultra shallow junctions and FINFET's of As implanted Si. With this new TOF-MEIS nano analysis technique, details of nano-structured materials could be measured quantitatively. Progresses in TOF-MEIS analysis in various nano & bio technology will be discussed. For last 10 years, I have been trying to develop multimodal nanobio imaging techniques for cardiovascular and brain tissues. Firstly, in atherosclerotic plaque imaging, using, coherent anti-stokes raman scattering (CARS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS) multimodal analysis showed that increased cholesterol palmitate may contribute to the formation of a necrotic core by increasing cell death. Secondly, surface plasmon resonance imaging ellipsometry (SPRIE) was developed for cell biointerface imaging of cell adhesion, migration, and infiltration dynamics for HUVEC, CASMC, and T cells. Thirdly, we developed an ambient mass spectrometric imaging system for live cells and tissues. Preliminary results on mouse brain hippocampus and hypotahlamus will be presented. In conclusions, multimodal optical and mass spectrometric imaging privides overall structural and morphological information with complementary molecular specific information, which can be a useful methodology for biomedical studies. Future challenges in optical and mass spectrometric imaging for new biomedical applications will be discussed.

  • PDF

Damage studies on irradiated tungsten by helium ions in a plasma focus device

  • Seyyedhabashy, Mir mohammadreza;Tafreshi, Mohammad Amirhamzeh;bidabadi, Babak Shirani;Shafiei, Sepideh;Nasiri, Ali
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.827-834
    • /
    • 2020
  • Damage of tungsten due to helium ions of a PF device was studied. The tungsten was analyzed by SEM and AFM after irradiation. SEM revealed fine bubbles of helium atoms with diameters of a few nanometers, which join and form larger bubbles and blisters on the surface of tungsten. This observation confirmed the results of molecular dynamics simulation. SEM analysis after etching of the irradiated surface indicated cavities with depth range of 35-85 nm. The average fluence of helium ion of the PF device was calculated about 5.2 × 1015 cm-2 per shot, using Lee code. Energy spectrum of helium ions was estimated using a Thomson parabola spectrometer as a function of dN/dE ∝ E-2.8 in the energy range of 10-200 keV. The characteristics of helium ion beam was imported to SRIM code. SRIM revealed that the maximum DPA and maximum helium concentration occur in the depth range of 20-50 nm. SRIM also showed that at depth of 30 nm, all of the tungsten atoms are displaced after 20 shots, while at depth of higher than 85 nm the destruction is insignificant. There is a close match between SRIM results and the measured depths of cavities in SEM images of tungsten after etching.

Particle Simulation on the Effect of Grid Cathode Geometry in SCBF Device (SCBF 장치에서 그리드 음극 구조의 영향에 대한 입자 시뮬레이션)

  • Ju, Heung-Jin;Park, Jeong-Ho;Ko, Kwang-Cheol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.8
    • /
    • pp.742-747
    • /
    • 2007
  • In 2-dimensional SCBF (Spherically Convergent Beam Fusion) device, the effect on neutron production rate of the grid cathode geometry was simulated. The motion of Particles was tracked using Monte Carlo Method including the atomic and molecular collision processes and potential distribution was calculated by Finite Element Method, Main processes of the discharge were the ionization of $D_2$ by fast $D_2^+\;ion$. As the number of cathode rings was small and the size of grid cathode decreased, the ion current increased and neutron production rate will also increase. The star mode discharge which is a very important characteristic in SCBF device, was confirmed by the ionization position.

Ab initio and Vibrational Predissociation Studies on Methylammonium-(Water)4 Complex: Evidence for Multiple Cyclic and Non-cyclic Hydrogen-bonded Structures

  • Kim, Kwang-Yon;Han, Woon-Hui;Cho, Ung-In;Lee, Yuan T.;Boo, Doo-Wan
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.12
    • /
    • pp.2028-2036
    • /
    • 2006
  • The combined ab initio and vibrational predissociation (VP) spectroscopic studies on methylammonium-$(water)_4$ complex aimed at understanding the hydration behavior of an amphiphilic ion core are described. The ab initio calculations predicted eleven low-energy isomers forming cyclic, tripod, chain, and caged structures, and their relative stabilities, total hydration energies and thermodynamic functions at 298 K and 150 K. The excellent correlation between the observed VP spectra and ab initio spectra for bonded N-H, bonded O-H and free O-H stretches suggested co-existence of five cyclic isomers and two non-cyclic isomers in ion beam at 150 K, consistent with the trends of calculated Gibbs free energies.

Preparation of Acrylic Acid Grafted Polypropylene by Electron Beam Irradiation and Heavy Metal Ion Adsorption Property (전자선 조사를 이용한 아크릴산이 그라프트된 폴리프로필렌의 제조 및 중금속 이온 흡착 특성)

  • Cheon, Ja young;Jeun, Joon-pyo
    • Composites Research
    • /
    • v.32 no.6
    • /
    • pp.335-341
    • /
    • 2019
  • In this study, an acrylic acid (AAc) was grafted on a polypropylene (PP) nonwoven fabric using electron beam irradiation. Electron beam grafting was carried out under various conditions to produce AAc grafted PP (PP-g-AAc) nonwoven fabric having a grafting yield of about 50% at radiation dose of 100 kGy and a monomer concentration of 60%. The physical and chemical properties of PP-g-AAc nonwoven fabric were evaluated by SEM, ATR-FTIR, thermal analysis and tensile strength. The morphology of PP and PP-g-AAc nonwoven fabric confirmed by SEM showed no significant change, and it was judged that AAc was introduced into PP nonwoven fabric from ATR-FTIR. PP-g-AAc nonwoven fabric showed an increase in tensile strength and a decrease in tensile strain compared to PP nonwoven fabric. However, since change of value is not significant, it is considered that there is no significant influence on the physical characterization. Adsorption experiments of PP-g-AAc nonwoven fabric on various ions showed selective adsorption behavior for lead ion. In conclusion, the electron beam radiation-induced PP-g-AAc nonwoven fabric is expected to be applied as an effective adsorbent for the adsorption of lead ions.

Friction and Pull-off Forces on Submicron-Size Asperity Measured in High Vacuum

  • Ando, Y.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.57-58
    • /
    • 2002
  • Asperity arrays and Independent asperities were fabricated on a silicon plate. Then pull-off and friction forces were measured on each asperity pattern by using AFM (atomic force microscope) in humid air and high vacuum of $2{\times}10^{-5}$ Pa. The probe of AFM cantilever has a flat square of about $1\;{\mu}m^2$ on its tip. The results showed that the pull-off force was proportional to the curvature radius of asperity peak in each ambient condition. The friction force was proportional to the pull-off force and was slightly higher in the humid air than in the high vacuum.

  • PDF

Sticking Characteristics in BiSrCaCuO Thin Film Fabricated by Layer-by-Layer Sputtering Method (순차 스퍼터법으로 제작한 BiSrCaCuO 박막의 부착 특성)

  • Cheon, Min-Woo;Park, Yong-Pil;Kim, Jeong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05d
    • /
    • pp.45-48
    • /
    • 2003
  • BiSrCaCuO thin films were fabricated by atomic layer-by-layer deposition using an ion beam sputtering method. 10 wt% and 90 wt% ozone mixed with oxygen were used with ultraviolet light irradiation to assist oxidation. At early stages of the atomic layer by layer deposition, two dimensional epitaxial growth which covers the substrate surface would be suppressed by the stress and strain caused by the lattice misfit, then three dimensional growth takes place. Since Cu element is the most difficult to oxidize, only Sr and Bi react with each other predominantly, and forms a buffer layer on the substrate in an amorphous-like structure, which is changed to $SrBi_2O_4$ by in-situ anneal.

  • PDF