• Title/Summary/Keyword: Atomic interface

Search Result 392, Processing Time 0.029 seconds

Ultrasonic Testing Simulation in Austenitie Stainless Steel Weld by Ray Tracing Technique (선추적기법을 활용한 오스테나이트계 스텐레스강 용접부 초음파탐상 모의)

  • Lee, S.L.;Lim, H.T.;Park, C.S.;Kim, B.C.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.15 no.1
    • /
    • pp.310-317
    • /
    • 1995
  • Crack detection technique by ultrasonics in structures and components made of austenitic stainless steel often loses its reliability due to the material characteristics during inservice inspection of nuclear power plants, especially in the area of detection and sizing in centrifugally cast stainless steel pipings. In order to understand and overcome this problem, computer program for tracing the ultrasonic rays within material has been developed to simulate the process of defect detection within weld. The program simulates through transmission and reflection technique in crack detection of austenitic stainless steel as well as ultrasonic beam propagation through multiple media including stainless steel cladding interface.

  • PDF

Current Conservation Factors for Consistent One-Dimensional Neutronics Modeling

  • Lee, Kibog;Joo, Han-Gyu;Cho, Byung-Oh;Zee, Sung-Quun
    • Nuclear Engineering and Technology
    • /
    • v.32 no.3
    • /
    • pp.235-243
    • /
    • 2000
  • A one-dimensional neutronics formulation is established within the framework of the nonlinear analytic nodal method such that it can result in consistent one-dimensional models that produce the same axial information as their corresponding reference three-dimension81 models. Consistency is achieved by conserving axial interface currents as well as the planar reaction rates of the three-dimensional case. For current conservation, flux discontinuity is introduced in the solution of the two-node problem. The degree of discontinuity, named the current conservation factor, is determined such that the surface averaged axial current of the reference three-dimensional case can be retrieved from the two-node calculation involving the radially collapsed group constants and the discontinuity factor. The current conservation factors are derived from the analytic nodal method and various core configurations are analyzed to show that the errors in K-eff and power distributions can be reduced by a order of magnitude by the use of the current conservation factor with no significant computational overhead.

  • PDF

Interfacing between MAAP and MACCS to perform radiological consequence analysis

  • Kim, Sung-yeop;Lee, Keo-hyoung;Park, Soo-Yong;Han, Seok-Jung;Ahn, Kwang-Il;Hwang, Seok-Won
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1516-1525
    • /
    • 2022
  • Interfacing the output of severe accident analysis with the input of radiological consequence analysis is an important and mandatory procedure at the beginning of Level 3 PSA. Such interfacing between the severe accident analysis code MELCOR and MACCS, one of the most commonly used consequence analysis codes, is relatively tractable since they share the same chemical groups, and the related interfacing software, MelMACCS, has already been developed. However, the linking between MAAP, another frequently used code for severe accident analyses, and MACCS has difficulties because MAAP employs a different chemical grouping method than MACCS historically did. More specifically, MAAP groups by chemical compound, while MACCS groups by chemical element. An appropriate interfacing method between MAAP and MACCS has therefore long been requested by users. This study suggests a way of extracting relevant information from MAAP results and providing proper source term information to MACCS by an appropriate treatment. Various parameters are covered in terms of magnitude and manner of release in this study, and special treatment is made for a bypass scenario. It is expected that the suggested approach will provide an important contribution as a guide to interface MAAP and MACCS when performing radiological consequence analyses.

An analytical model to decompose mass transfer and chemical process contributions to molecular iodine release from aqueous phase under severe accident conditions

  • Giedre Zablackaite;Hiroyuki Shiotsu;Kentaro Kido;Tomoyuki Sugiyama
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.536-545
    • /
    • 2024
  • Radioactive iodine is a representative fission product to be quantified for the safety assessment of nuclear facilities. In integral severe accident analysis codes, the iodine behavior is usually described by a multi-physical model of iodine chemistry in aqueous phase under radiation field and mass transfer through gas-liquid interface. The focus of studies on iodine source term evaluations using the combination approach is usually put on the chemical aspect, but each contribution to the iodine amount released to the environment has not been decomposed so far. In this study, we attempted the decomposition by revising the two-film theory of molecular-iodine mass transfer. The model involves an effective overall mass transfer coefficient to consider the iodine chemistry. The decomposition was performed by regarding the coefficient as a product of two functions of pH and the overall mass transfer coefficient for molecular iodine. The procedure was applied to the EPICUR experiment and suppression chamber in BWR.

Effect of Oscillatory Shear on the Interfacial Morphology of a Reactive Bilayer Polymer System

  • Kim, Hwang-Yong;Lee, Dong-Hyun;Kim, Jin-Kon
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.350-350
    • /
    • 2006
  • We investigated, via atomic force microscopy and transmission electron microscopy, the effect of shear force on the interfacial morphology of a reactive bilayer polymer system composed of PS-mCOOH and PMMAGMA. It has been observed that in the absence of oscillatory shearing the roughness of the interface increased with reaction period, while at large values of ${\gamma}_{0}\;and\;{\omega}$ it became less than that observed in the absence of oscillatory shearing. This observation may be attributable to the possibility that oscillatory shearing might have hindered the diffusion of polymer chains, which are located away from the interface, to the interface of the layers. However, the effect of ${\gamma}_{0}\;and\;{\omega}$ on the roughness of the interface of (PS-mCOOH)/(PMMA-GMA) bilayer is found to be quite different.

  • PDF

Effects of Surface Roughness and Interface Wettability in a Nanochannel (나노 채널에서의 표면 거칠기와 경계 습윤의 효과)

  • Choo, Yun-Sik;Seo, In-Soo;Lee, Sang-Hwan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.2
    • /
    • pp.5-11
    • /
    • 2010
  • The nanofluidics is characterized by a large surface-to-volume ratio, so that the surface properties strongly affect the flow resistance. We present here the results showing that the effect of wetting properties and the surface roughness may considerably reduce the friction of fluid past the boundaries. For a simple fluid flowing over hydrophilic and hydrophobic surfaces, the influences of surface roughness are investigated by the nonequilibrium molecular dynamics (NEMD) simulations. The fluid slip at near a solid surface highly depends on the wall-fluid interaction. For hydrophobic surfaces, apparent fluid slips are observed on smooth and rough surfaces. The solid wall is modeled as a rough atomic sinusoidal wall. The effects on the boundary condition of the roughness characteristics are given by the period and amplitude of the sinusoidal wall. It was found that the slip velocity for wetting conditions at interface decreases with increasing effects of surface roughness. The results show the surface rougheness and wettability determines the slip or no-slip boundary conditions. The surface roughness geometry shows significant effects on the boundary conditions at the interface.

Comparing the Passivation Quality of Ozone and H2O Oxidant of Atomic Layer Deposited Al2O3 by Post-annealing in N2 and Forming Gas Ambients for Passivated Emitter and Rear Cell (PERC)

  • Cho, Young Joon;Chang, Hyo Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.462-462
    • /
    • 2014
  • The effect of rear passivation for passivated emitter and rear cell (PERC) using ozone and H2O oxidant of atomic layer deposited (ALD) Al2O3 was studied by post-annealing in N2 and forming gas ambients. Rear surface of PERC solar cell was passivated by Al2O3 grown by ALD with ozone and H2O oxidant. Al2O3 grown by ALD with ozone oxidant has been known to have many advantages, such as lower interface defects, low leakage current density. Its passivation quality is better than Al2O3 with H2O. Al2O3 layer with 10 nm and 20 nm thickness was grown at $150^{\circ}C$ with ozone oxidant and at $250^{\circ}C$ with H2O oxidant. And then each samples were post-annealled at $450^{\circ}C$ in N2 ambients and at $850^{\circ}C$ in forming gas ambients. The passivation quality was investigated by measuring the minority carrier lifetime respectively. We examined atomic layer deposited Al2O3 such as growth rate, film density, thickness, negative fixed charge density at AlOx/Si interface, and reflectance. The influences of process temperature and heat treatment were investigated using Sinton (WCT-120) by Quasi-Steady State Photoconductance (QSSPC) mode. Ozone-based ALD Al2O3 film shows the best carrier lifetime at lower deposition temperature than H2O-based ALD.

  • PDF

Framework for Building Reusable Design Systems (재사용 가능한 디자인 시스템 구축을 위한 프레임워크)

  • Lee, Young-Ju
    • Journal of Digital Convergence
    • /
    • v.19 no.1
    • /
    • pp.343-348
    • /
    • 2021
  • This study investigated the method of constructing and combining blocks based on the atomic design system in order to propose a framework for rescue of a reusable design system. For that, I first looked at the necessity of a design system and examples of snow white, skeuomorphic design, flat design, and material design. In addition, molecules, atoms, organisms, templates and pages of atomic design using the principles of chemistry as metaphors were defined through literature studies. In order to implement a new framework, an interface inventory was constructed, and among them, font, color, image and control elements were extracted as core visual elements, and guidelines were defined, and molecular elements were classified and composed of atoms based on them. Blocks are constructed in the form of blocks based on the design pattern most used in the content inventory, and the framework is constructed to implement a layout based on a visual grid and design a page through a combination of blocks. The significance of this paper is that the new framework helps team consistency and collaboration by reusing blocks and supports file sharing and updating.

Improving Electrochemical Performance of Ni-rich Cathode Using Atomic Layer Deposition with Particle by Particle Coating Method

  • Kim, Dong Wook;Park, DaSom;Ko, Chang Hyun;Shin, Kwangsoo;Lee, Yun-Sung
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.237-245
    • /
    • 2021
  • Atomic layer deposition (ALD) enhances the stability of cathode materials via surface modification. Previous studies have demonstrated that an Ni-rich cathode, such as LiNi0.8Co0.1Mn0.1O2, is a promising candidate owing to its high capacity, but is limited by poor cycle stability. In this study, to enhance the stability of the Ni-rich cathode, synthesized LiNi0.8Co0.1Mn0.1O2 was coated with Al2O3 using ALD. Thus, the surface-modified cathode exhibited enhanced stability by protecting the interface from Ni-O formation during the cycling process. The coated LiNi0.8Co0.1Mn0.1O2 exhibited a capacity of 176 mAh g-1 at 1 C and retained up to 72% of the initial capacity after 100 cycles within a range of 2.8-4.3 V (vs Li/Li+. In contrast, pristine LiNi0.8Co0.1Mn0.1O2 presented only 58% of capacity retention after 100 cycles with an initial capacity of 173 mAh g-1. Improved cyclability may be a result of the ALD coating, which physically protects the electrode by modifying the interface, and prevents degradation by resisting side reactions that result in capacity decay. The electrochemical impedance spectra and structural and morphological analysis performed using electron microscopy and X-ray techniques establish the surface enhancement resulting from the aforementioned strategy.

Thermoelectric Performance Enhancement of Sintered Bi-Te Pellets by Rotary-type Atomic Layer Deposition (로터리형 원자층 증착법을 이용한 Bi-Te계 소결체의 열전 성능 개선)

  • Myeong Jun Jung;Ji Young Park;Su Min Eun;Byung Joon Choi
    • Journal of Powder Materials
    • /
    • v.30 no.2
    • /
    • pp.130-139
    • /
    • 2023
  • Thermoelectric materials and devices are energy-harvesting devices that can effectively recycle waste heat into electricity. Thermoelectric power generation is widely used in factories, engines, and even in human bodies as they continuously generate heat. However, thermoelectric elements exhibit poor performance and low energy efficiency; research is being conducted to find new materials or improve the thermoelectric performance of existing materials, that is, by ensuring a high figure-of-merit (zT) value. For increasing zT, higher σ (electrical conductivity) and S (Seebeck coefficient) and a lower κ (thermal conductivity) are required. Here, interface engineering by atomic layer deposition (ALD) is used to increase zT of n-type BiTeSe (BTS) thermoelectric powders. ALD of the BTS powders is performed in a rotary-type ALD reactor, and 40 to 100 ALD cycles of ZnO thin films are conducted at 100℃. The physical and chemical properties and thermoelectric performance of the ALD-coated BTS powders and pellets are characterized. It is revealed that electrical conductivity and thermal conductivity are decoupled, and thus, zT of ALD-coated BTS pellets is increased by more than 60% compared to that of the uncoated BTS pellets. This result can be utilized in a novel method for improving the thermoelectric efficiency in materials processing.